Función cuadrática
Función cuadrática. En matemáticas, una función cuadrática de una variable es una función polinómica definida por:
f(x) = ax² + bx + c Representación gráfica de la parábola
Podemos construir una parábola a partir de estos puntos: 1. Vértice
Vértice
Por el vértice pasa el eje de simetría de la parábola.
La ecuación del eje de simetría es:
eje 2. Puntos de corte con el eje OX
En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:
ax² + bx + c = 0
Resolviendo la ecuación podemos obtener:
Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0
Un punto de corte: (x1, 0) si b² − 4ac = 0
Ningún punto de corte si b² − 4ac < 0 3. Punto de corte con el eje OY
En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:
f(0) = a · 0² + b · 0 + c = c (0,c)
Fuentes
Grupo Epsilon, ed. (9 de 1994). Estudio de funciones: la función cuadrática (1 edición). Fundación Bancaja. ISBN 978-84-88715-06-7. Gallego Palomero (7 de 1989). Función cuadrática (1 edición). Ediciones SM. ISBN 978-84-348-2869-8.