Teorema de Euler

Teorema de Euler
Concepto:Para determinar si una Función es Homogénea utiliza la definición de Función Homogenéa o demuestra que se cumple el Teorema de Euler.

Teorema de Euler. Enunciado por Leonhard Euler sobre las Funciones Homogéneas, es una caracterización de las funciones homogéneas.

Definición

La función f(x,y) se llama Función Homogénea de grado n si para cualquier factor real K se verifica la igualdad

f(kx,ky) = kn f(x,y).

Ejemplo 1

Diga si la función dada es homegénea y cual es el grado de homogeniedad.

z = f(x,y) = x 2 + xy − y2

f(λx, λy ) = (λx)2 + (λx)(λy) − (λy)2 = λ2 x2 + λ2xy − λ2 y2 = λ2(x2 + xy − y2)

f(λx, λy) = λ2f(x,y)

Como la función z = f ( x, y ) cumple la definición, decimos que z es homogénea de grado 2 .

Primer Teormea de Euler

Si z = f ( x, y ) es una función homogénea de grado “ n ” y sus derivadas parciales de primer orden existen, entonces:

xf´x(x,y) + yf´y(x,y) = n f(x,y)

Una función racional entera será homogénea, si todos los términos de la misma son del mismo grado.

Ejemplo 2

Demuestra si la siguiente función cumple el teorema de Euler.

f ( x, y )= x2 - 2x3y2 - y5

f´x(x,y) = 5x4 - 6x2y2

f´y(x,y) = -4x3y - 5y4

xf´x(x,y) + yf´y(x,y)= x(5x4 - 6x2y2) + y(-4x3y - 5y4) = 5x2 10x3y2 - 5y5 = 5 f(x,y)

Fuente

Véase también

This article is issued from Ecured. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.