21 (number)

21 (twenty-one) is the natural number following 20 and preceding 22.

20 21 22
Cardinaltwenty-one
Ordinal21st
(twenty-first)
Factorization3 × 7
Divisors1, 3, 7, 21
Greek numeralΚΑ´
Roman numeralXXI
Binary101012
Ternary2103
Senary336
Octal258
Duodecimal1912
Hexadecimal1516

The current century is the 21st century AD, under the Gregorian calendar.

In mathematics

21 is:

  • a composite number, its proper divisors being 1, 3 and 7, and a deficient number as the sum of these divisors is less than the number itself.
  • a Fibonacci number as it is the sum of the preceding terms in the sequence, 8 and 13.[1]
  • the fifth Motzkin number.[2]
  • a triangular number,[3] because it is the sum of the first six natural numbers (1 + 2 + 3 + 4 + 5 + 6 = 21).
  • an octagonal number.[4]
  • a Padovan number, preceded by the terms 9, 12, 16 (it is the sum of the first two of these) in the padovan sequence.[5]
  • a Blum integer, since it is a semiprime with both its prime factors being Gaussian primes.[6]
  • the sum of the divisors of the first 5 positive integers (i.e., 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5))
  • the smallest non-trivial example of a Fibonacci number whose digits are Fibonacci numbers and whose digit sum is also a Fibonacci number.
  • a Harshad number.[7]
  • a repdigit in quarternary (1114).
  • the smallest natural number that is not close to a power of 2, 2n, where the range of closeness is ±n.
  • the smallest number of differently sized squares needed to square the square.[8]
  • the largest n with this property: for any positive integers a,b such that a + b = n, at least one of and is a terminating decimal. See a brief proof below.

Note that a necessary condition for n is that for any a coprime to n, a and n - a must satisfy the condition above, therefore at least one of a and n - a must only have factor 2 and 5.

Let denote the quantity of the numbers smaller than n that only have factor 2 and 5 and that are coprime to n, we instantly have .

We can easily see that for sufficiently large n, , but , as n goes to infinity, thus fails to hold for sufficiently large n.

In fact, For every n > 2, we have

and

so fails to hold when n > 273 (actually, when n > 33).

Just check a few numbers to see that '= 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21.

In science

Age 21

  • In thirteen countries, 21 is the age of majority. See also: Coming of age.
  • In eight countries, 21 is the minimum age to purchase tobacco products.
  • In seventeen countries, 21 is the drinking age.
  • In nine countries, it is the voting age.
  • In the United States:
    • 21 is the minimum age at which a person may gamble or enter casinos in most states (since alcohol is usually provided).
    • 21 is the minimum age to purchase a handgun or handgun ammunition under federal law.
    • 21 is the age at which one can purchase multiple tickets to an R-rated film.
    • In some states, 21 is the minimum age to accompany a learner driver, provided that the person supervising the learner has held a full driver license for a specified amount of time. See also: List of minimum driving ages.

In sports

  • Twenty-one is a variation of street basketball, in which each player, of which there can be any number, plays for himself only (i.e. not part of a team); the name comes from the requisite number of baskets.
  • In three-on-three basketball games held under FIBA rules, branded as 3x3, the game ends by rule once either team has reached 21 points.
  • In badminton, and table tennis (before 2001), 21 points are required to win a game.
  • In AFL Women's, the top-level league of women's Australian rules football, each team is allowed a squad of 21 players (16 on the field and five interchanges).
  • In NASCAR, 21 has been used by Wood Brothers Racing and Ford for decades. The team has won 99 NASCAR Cup Series races, a majority with 21, and 5 Daytona 500’s. Their current driver is Harrison Burton.

In other fields

Building called "21" in Zlín, Czech Republic.
Detail of the building entrance

21 is:

References

  1. "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  2. "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  3. "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  4. "Sloane's A000567 : Octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  5. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  6. "Sloane's A016105 : Blum integers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  7. "Sloane's A005349 : Niven (or Harshad) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  8. C. J. Bouwkamp, and A. J. W. Duijvestijn, "Catalogue of Simple Perfect Squared Squares of Orders 21 Through 25." Eindhoven University of Technology, Nov. 1992.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.