Nicholas A. Kotov

Nicholas A. Kotov (born August 29, 1965, Moscow, USSR) is the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan in Ann Arbor, MI, USA.[1]

Nicholas A. Kotov
2021
Born (1965-08-29) August 29, 1965
NationalityAmerican
Alma materMoscow State University
Known forself-assembling materials, layer-by-layer assembly, nanotechnology
Scientific career
FieldsChemistry, Chemical Engineering, Materials Science, Nanotechnology, Biomedical Engineering
InstitutionsUniversity of Michigan
ThesisPhotoelectrochemical Effects at the Interface of the Two Immiscible Electrolyte Solutions
Doctoral advisorMikhail Kuzmin
Other academic advisorsJanos H. Fendler
Websitehttp://www.umkotov.com/

He is also the Visiting Professor of Aeronautical Engineering at the Imperial College, London.  Kotov was a pioneer of the theoretical foundations and practical implementations of complex systems built from ‘imperfect’ nanoparticles. Kotov demonstrated that the ability to self-organize is the unifying property of all inorganic nanoparticles, regardless of their structural perfection, and that the complexity and functionality of the resulting materials dramatically increases for specific asymmetries.[2][3] Examples of such materials include layered organic-inorganic composites from highly polydisperse one- (1D) and two-dimensional (2D) nanostructures.[4][5]

These materials display a spectrum of previously unattainable properties and combinations thereof,[6] and are now widely utilized as high-performance nanocomposites for energy, military, health, and food technologies. Kotov is the recipient of over 60 major national and international awards and recognitions. Together with his students, he has founded several startups that commercialized self-assembled nanostructures for energy, healthcare and automotive industry. Nicholas is a Fellow of the American Academy of Arts and Sciences and the National Academy of Inventors.

Kotov is an advocate of scientists and students with visible and invisible disabilities. He spearheaded the opening of Thinkabit Lab[7] for underserved schoolchildren in Detroit as a collaboration between University of Michigan and Qualcomm. Kotov consistently and unequivocally advocated for the sovereignty of Ukraine and supports scientists displaced by the war in Ukraine.[8][9]

Work

Kotov is best known for his work of complex chemical systems from ‘imperfect’ particles that have wide size distribution and highly diverse geometrical shapes. Such particles can be easily synthesized or sourced from abundant minerals.[10] Structural irregularities typically favor formation of disorganized stochastic agglomerates and were earlier considered to be an unsurmountable barrier for their self-organization into neatly organized colloidal crystals.

In the mid-1990s, Kotov showed that a broad spectrum of stratified composites engineered with nanoscale precision from 1D and 2D nanomaterials. The large family of 1D nanomaterials includes nanofibers, nanotubes, and nanowires, while the equally large group of 2D nanomaterials includes nanosheets, nanoribbons, and nanoplatelets. Kotov demonstrated the construction of high-performance composites from both 1D and 2D nanocomponents and combinations thereof utilizing the electrostatic and symmetry restrictions of layer-by-layer assembly (LbL).[11]

Notably, he pioneered high-performance composites from nanorods of cellulose nanofibers of collagen nanosheets of graphite oxide and nanoplatelets of natural clays.[12][13][14][15]

In the 2010s, Kotov extended the realization of electrostatically-restricted assemblies from surfaces to solutions. During this period he has shown that reduction of symmetry is essential for the emergence of complexity in systems of asymmetric nanoparticles with realistic spectrum sizes and shapes.[16]

He demonstrated that nanoscale chirality, i.e. the lack of certain symmetry operations possible for perfect spheres, rods or sheets, leads to exceptional complexity rivaling or exceeding that found in evolution-perfected biological structures.[17] He pioneered a graph theoretical (GT) description of hierarchical organization  and GT design of nanocomposites from 1D, 2D and chiral nanocomponents. Exploration of electrostatically-restricted self-assembly of chiral nanoparticles led to a large family of complex particles with sophisticated assembly patterns for biomedical,[18] catalytic,[19] and photonic[20] technologies. The complex particles with gradually variable twists enable high visibility tags for machine vision devices.[10][21][22][23][14][24][25][26][27][28][29][30]

References

  1. "Nicholas A. Kotov | Michigan Engineering". Engin.umich.edu. Retrieved 2013-10-08.
  2. "acs.org". cen.acs.org. Retrieved 2021-02-10.
  3. "Nicholas Kotov of University of Michigan is 2020 Alpha Chi Sigma Award Recipient". www.aiche.org. 2020-10-12. Retrieved 2021-02-10.
  4. "New Plastic is Transparent and Strong as Steel". NetComposites. Retrieved 2021-02-10.
  5. "Kotov wins the Stephanie L. Kwolek Award". Michigan Engineering. May 20, 2016. Retrieved 2021-02-10.
  6. "U-M research: New plastic is strong as steel, transparent". EurekAlert!. Retrieved 2021-02-10.
  7. [ps://mez.engin.umich.edu/qualcomm-thinkabit-lab/ "engin.umich.edu"].
  8. Kotov, Nicholas A.; Akinwande, Deji; Brinker, C. Jeffrey; Buriak, Jillian M.; Chan, Warren C. W.; Chen, Xiaodong; Chhowalla, Manish; Chueh, William; Glotzer, Sharon C.; Gogotsi, Yury; Hersam, Mark C.; Ho, Dean; Hu, Tony; Javey, Ali; Kagan, Cherie R. (2022-04-26). "Tanks and Truth". ACS Nano. 16 (4): 4975–4976. doi:10.1021/acsnano.2c02602. ISSN 1936-0851.
  9. World2022-03-29T15:36:00+01:00, Chemistry. "Letter from scientists of Ukrainian, Russian and Belarusian descent to governments and science funding organisations". Chemistry World. Retrieved 2023-05-08.
  10. Kahr, Bart (March 2023). "Bow-tie particles boast a tunable twist". Nature. 615 (7952): 395–396. doi:10.1038/d41586-023-00705-x.
  11. G. Decher; J. D. Hong; J. Schmitt (1992). "Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces". Thin Solid Films. 210/211: 831. Bibcode:1992TSF...210..831D. doi:10.1016/0040-6090(92)90417-A.
  12. Grant, Gregory G.S.; Koktysh, Dmitry S.; Yun, BoGeon; Matts, Robert L.; Kotov, Nicholas A. (2001-12-01). "Layer-By-Layer Assembly of Collagen Thin Films: Controlled Thickness and Biocompatibility". Biomedical Microdevices. 3 (4): 301–306. doi:10.1023/A:1012456714628. ISSN 1572-8781.
  13. Kotov, N. A.; Magonov, S.; Tropsha, E. (March 1998). "Layer-by-Layer Self-Assembly of Alumosilicate−Polyelectrolyte Composites: Mechanism of Deposition, Crack Resistance, and Perspectives for Novel Membrane Materials". Chemistry of Materials. 10 (3): 886–895. doi:10.1021/cm970649b. ISSN 0897-4756.
  14. Zhiyong Tang; Nicholas A. Kotov; Michael Giersig (2002). "Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires". Science. 297 (5579): 237–40. Bibcode:2002Sci...297..237T. doi:10.1126/science.1072086. PMID 12114622. S2CID 45388619.
  15. Wei Chen; Ai Bian; Ashish Agarwal; Liqiang Liu; Hebai Shen; Libing Wang; Chuanlai Xu; Nicholas A. Kotov (2009). "Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials". Nano Letters. 9 (5): 2153–2159. Bibcode:2009NanoL...9.2153C. doi:10.1021/nl900726s. PMID 19320495. S2CID 35163925.
  16. Michigan, University of (2020-04-15). "World's Most Complex Microparticle Ever Made – Synthetic That Surpasses Nature's Intricacy". SciTechDaily. Retrieved 2023-05-08.
  17. Jiang, Wenfeng; Qu, Zhi-bei; Kumar, Prashant; Vecchio, Drew; Wang, Yuefei; Ma, Yu; Bahng, Joong Hwan; Bernardino, Kalil; Gomes, Weverson R.; Colombari, Felippe M.; Lozada-Blanco, Asdrubal; Veksler, Michael; Marino, Emanuele; Simon, Alex; Murray, Christopher (2020-05-08). "Emergence of complexity in hierarchically organized chiral particles". Science. 368 (6491): 642–648. doi:10.1126/science.aaz7949. ISSN 0036-8075.
  18. Xu, Liguang; Wang, Xiuxiu; Wang, Weiwei; Sun, Maozhong; Choi, Won Jin; Kim, Ji-Young; Hao, Changlong; Li, Si; Qu, Aihua; Lu, Meiru; Wu, Xiaoling; Colombari, Felippe M.; Gomes, Weverson R.; Blanco, Asdrubal L.; de Moura, Andre F. (January 2022). "Enantiomer-dependent immunological response to chiral nanoparticles". Nature. 601 (7893): 366–373. doi:10.1038/s41586-021-04243-2. ISSN 1476-4687.
  19. Li, Si; Liu, Juan; Ramesar, Naomi S.; Heinz, Hendrik; Xu, Liguang; Xu, Chuanlai; Kotov, Nicholas A. (2019-10-23). "Single- and multi-component chiral supraparticles as modular enantioselective catalysts". Nature Communications. 10 (1): 4826. doi:10.1038/s41467-019-12134-4. ISSN 2041-1723.
  20. Kumar, Prashant; Vo, Thi; Cha, Minjeong; Visheratina, Anastasia; Kim, Ji-Young; Xu, Wenqian; Schwartz, Jonathan; Simon, Alexander; Katz, Daniel; Nicu, Valentin Paul; Marino, Emanuele; Choi, Won Jin; Veksler, Michael; Chen, Si; Murray, Christopher (March 2023). "Photonically active bowtie nanoassemblies with chirality continuum". Nature. 615 (7952): 418–424. doi:10.1038/s41586-023-05733-1. ISSN 1476-4687.
  21. Kotov, Nicholas A.; Dékány, Imre; Fendler, Janos H. (August 1996). "Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states". Advanced Materials. 8 (8): 637–641. Bibcode:1996AdM.....8..637K. doi:10.1002/adma.19960080806.
  22. Podsiadlo, Paul; Kaushik, Amit K.; Arruda, Ellen M.; Waas, Anthony M.; Shim, Bong Sup; Xu, Jiadi; Nandivada, Himabindu; Pumplin, Benjamin G.; Lahann, Joerg (2007-10-05). "Ultrastrong and Stiff Layered Polymer Nanocomposites". Science. 318 (5847): 80–83. Bibcode:2007Sci...318...80P. doi:10.1126/science.1143176. ISSN 0036-8075. PMID 17916728. S2CID 22559961.
  23. Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao (2017-08-18). "Mass production of bulk artificial nacre with excellent mechanical properties". Nature Communications. 8 (1): 287. Bibcode:2017NatCo...8..287G. doi:10.1038/s41467-017-00392-z. ISSN 2041-1723. PMC 5562756. PMID 28821851.
  24. Zhiyong Tang; Zhenli Zhang; Ying Wang; Sharon C. Glotzer; Nicholas A. Kotov (2006). "Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets". Science. 314 (5797): 274–8. Bibcode:2006Sci...314..274T. doi:10.1126/science.1128045. PMID 17038616. S2CID 18839769.
  25. Sudhanshu Srivastava; Aaron Santos; Kevin Critchley; Ki-Sub Kim; Paul Podsiadlo; Kai Sun; Jaebeom Lee; Chuanlai Xu; G. Daniel Lilly; Sharon C. Glotzer; Nicholas A. Kotov (2010). "Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons". Science. 327 (5971): 1355–9. Bibcode:2010Sci...327.1355S. doi:10.1126/science.1177218. PMID 20150443. S2CID 22492581. Archived from the original on September 26, 2017.
  26. Zhou, Yunlong; Marson, Ryan L.; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C. (2016-03-22). "Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles". ACS Nano. 10 (3): 3248–3256. doi:10.1021/acsnano.5b05983. ISSN 1936-0851. OSTI 1440921. PMID 26900920. S2CID 30561840.
  27. Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A.; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A. (2017-03-01). "Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors". Science Advances. 3 (3): e1601159. Bibcode:2017SciA....3E1159F. doi:10.1126/sciadv.1601159. ISSN 2375-2548. PMC 5332156. PMID 28275728.
  28. Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A. (2011-08-21). "Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles". Nature Nanotechnology. 6 (9): 580–587. Bibcode:2011NatNa...6..580X. doi:10.1038/nnano.2011.121. ISSN 1748-3395. PMID 21857686.
  29. Ma, Wei; Xu, Liguang; de Moura, André F.; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A. (2017-06-28). "Chiral Inorganic Nanostructures". Chemical Reviews. 117 (12): 8041–8093. doi:10.1021/acs.chemrev.6b00755. ISSN 0009-2665. PMID 28426196.
  30. Jiang, Wenfeng; Qu, Zhi-bei; Kumar, Prashant; Vecchio, Drew; Wang, Yuefei; Ma, Yu; Bahng, Joong Hwan; Bernardino, Kalil; Gomes, Weverson R.; Colombari, Felippe M.; Lozada-Blanco, Asdrubal (2020-05-08). "Emergence of complexity in hierarchically organized chiral particles". Science. 368 (6491): 642–648. Bibcode:2020Sci...368..642J. doi:10.1126/science.aaz7949. ISSN 0036-8075. PMID 32273399. S2CID 215726726.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.