Pearcey integral

In mathematics, the Pearcey integral is defined as[1]

A plot of the absolute value of the Pearcey integral as a function of its two parameters.
A photograph of a cusp caustic produced by illuminating a flat surface with a laser beam through a droplet of water.

The Pearcey integral is a class of canonical diffraction integrals, often used in wave propagation and optical diffraction problems[2] The first numerical evaluation of this integral was evaluated using the quadrature formula in Trevor Pearcey.[3][4]

In optics, the Pearcey integral can be used to model diffraction effects at a cusp caustic.

References

  1. Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark, NIST Handbook of Mathematical Functions, p. 777, Cambridge, 2010
  2. Paris, R. B. (2011). Hadamard Expansions and Hyperasymptotic Evaluation. doi:10.1017/CBO9780511753626. ISBN 9781107002586.
  3. Pearcey, T. (1946). "XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 37 (268): 311–317. doi:10.1080/14786444608561335.
  4. López, José L.; Pagola, Pedro J. (2016). "Analytic formulas for the evaluation of the Pearcey integral". Mathematics of Computation. 86 (307): 2399–2407. arXiv:1601.03615. doi:10.1090/mcom/3164.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.