Descartes' theorem
In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.
History
Geometrical problems involving tangent circles have been pondered for millennia. In ancient Greece of the third century BC, Apollonius of Perga devoted an entire book to the topic, De tactionibus [On tangencies]. It has been lost, and is known only through mentions of it in other works.[1]
René Descartes discussed the problem briefly in 1643, in a letter to Princess Elisabeth of the Palatinate. He came up with the equation describing the relation between the radii, or curvatures, of four pairwise tangent circles. This result became known as Descartes' theorem.[2]
This result was rediscovered in 1826 by Jakob Steiner,[3] in 1842 by Philip Beecroft,[4] and in 1936 by Frederick Soddy. The kissing circles in this problem are sometimes known as Soddy circles and line connecting their centers as Soddy line perhaps because Soddy chose to publish his version of the theorem in the form of a poem, titled The Kiss Precise. Soddy also extended the theorem to spheres;[5] Thorold Gosset extended the theorem to arbitrary dimensions.[6]
Definition of curvature

Descartes' theorem is most easily stated in terms of the circles' curvatures. The curvature (or bend) of a circle is defined as , where is its radius. The larger a circle, the smaller is the magnitude of its curvature, and vice versa.
The sign in (represented by the symbol) is positive for a circle that is externally tangent to the other circles, like the three black circles in the image. For an internally tangent circle like the large red circle, that circumscribes the other circles, the sign is negative. If a straight line is considered a degenerate circle with zero curvature (and thus infinite radius), Descartes' theorem also applies to a line and three circles that are all three mutually tangent.
For four circles that are tangent to each other at six distinct points, with curvatures for , Descartes' theorem says:
-
(1)
To find the radius of a fourth circle tangent to three given kissing circles, the equation can be written
-
(2)
The ± symbol indicates that in general there are two solutions to this equation, and two tangent circles (or degenerate straight lines) to any triple of tangent circles. Problem-specific criteria may favor one of these two solutions over the other in any given problem.
Special cases


If one of the three circles, say number 3, is replaced by a straight line, then its curvature k3 is zero and drops out of equation (1). Equation (2) then simplifies to:
-
(3)
If two circles are replaced by lines, the tangency between the two replaced circles becomes a parallelism between their two replacement lines. For all four curves to remain mutually tangent, the other two circles must be congruent. In this case, with k2 = k3 = 0, equation (2) is reduced to the trivial
It is not possible to replace three circles by lines, as it is not possible for three lines and one circle to be mutually tangent. Descartes' theorem does not apply when all four circles are tangent to each other at the same point.
Another special case is when the ki are squares,
Euler showed that this is equivalent to the simultaneous triplet of Pythagorean triples,
and can be given a parametric solution. When the minus sign of a curvature is chosen,
this can be solved[7] as,
where
parametric solutions of which are well-known.
Complex Descartes theorem
To determine a circle completely, not only its radius (or curvature), but also its center must be known. The relevant equation is expressed most clearly if the coordinates (x, y) are interpreted as a complex number z = x + iy. The equation then looks similar to Descartes' theorem and is therefore called the complex Descartes theorem.
Given four circles with curvatures ki and centers zi (for i = 1, 2, 3, 4), the following equality holds in addition to equation (1):
-
(4)
Once k4 has been found using equation (2), one may proceed to calculate z4 by rewriting equation (4) to a form similar to equation (2):
Again, in general there are two solutions for z4 corresponding to the two solutions for k4. Note that the plus/minus sign in the above formula for z does not necessarily correspond to the plus/minus sign in the formula for k.
Generalizations
The generalization to n dimensions is sometimes referred to as the Soddy–Gosset theorem, although its three-dimensional case was stated by Robert Lachlan in 1886.[8][9] In n-dimensional Euclidean space, the maximum number of mutually tangent (n − 1)-spheres is n + 2. For example, in 3-dimensional space, five spheres can be mutually tangent. The curvatures of the hyperspheres satisfy
with the case ki = 0 corresponding to a flat hyperplane, in exact analogy to the 2-dimensional version of the theorem.[8]
Although there is no 3-dimensional analogue of the complex numbers, the relationship between the positions of the centers can be re-expressed as a matrix equation, which also generalizes to n dimensions.[8]
See also
Notes
- Court, N. A. (October 1961), "The problem of Apollonius", The Mathematics Teacher, 54 (6): 444–452, doi:10.5951/MT.54.6.0444, JSTOR 27956431
- Shapiro, Lisa (2007), The Correspondence between Princess Elisabeth of Bohemia and René Descartes, The Other Voice in Early Modern Europe, University of Chicago Press, pp. 37–39, 73–77, ISBN 978-0-226-20444-4
- Steiner, Jakob (January 1826), "Fortsetzung der geometrischen Betrachtungen (Heft 2, S. 161)", Journal für die reine und angewandte Mathematik, 1826 (1): 252–288, doi:10.1515/crll.1826.1.252, S2CID 121590578
- Beecroft, Philip (1842), "Properties of circles in mutual contact", The Lady's and Gentleman's Diary (139): 91–96
- Soddy, F. (June 1936), "The Kiss Precise", Nature, 137 (3477): 1021, Bibcode:1936Natur.137.1021S, doi:10.1038/1371021a0, S2CID 6012051
- "The Kiss Precise", Nature, 139 (3506): 62, January 1937, Bibcode:1937Natur.139Q..62., doi:10.1038/139062a0
- A Collection of Algebraic Identities: Sums of Three or More 4th Powers
- Lagarias, Jeffrey C.; Mallows, Colin L.; Wilks, Allan R. (2002), "Beyond the Descartes circle theorem", The American Mathematical Monthly, 109 (4): 338–361, arXiv:math/0101066, doi:10.2307/2695498, JSTOR 2695498, MR 1903421
- Lachlan, R. (1886), "On Systems of Circles and Spheres", Philosophical Transactions of the Royal Society of London, 177: 481–625, JSTOR 109492; see "Spheres touching one another", pp. 585–587