Table of Gaussian integer factorizations
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite. The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes.
Note that there are rational primes which are not Gaussian primes. A simple example is the rational prime 5, which is factored as 5=(2+i)(2−i) in the table, and therefore not a Gaussian prime.
Conventions
    
The second column of the table contains only integers in the first quadrant, which means the real part x is positive and the imaginary part y is non-negative. The table might have been further reduced to the integers in the first octant of the complex plane using the symmetry y + ix =i (x − iy).
The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i)2(2+i), for example, could also be written as 4+2i= (1+i)2(1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
The entries are sorted according to increasing norm x2 + y2 (sequence A001481 in the OEIS). The table is complete up to the maximum norm at the end of the table in the sense that each composite or prime in the first quadrant appears in the second column.
Gaussian primes occur only for a subset of norms, detailed in sequence OEIS: A055025. This here is a human-readable version of sequences OEIS: A103431 and OEIS: A103432.
Factorizations
    
| norm | integer | factors | 
|---|---|---|
| 2 | 1+i | (p) | 
| 4 | 2 | −i·(1+i)2 | 
| 5 |  2+i  1+2i  | (p)  (p)  | 
| 8 | 2+2i | −i·(1+i)3 | 
| 9 | 3 | (p) | 
| 10 |  1+3i  3+i  |  (1+i)·(2+i)  (1+i)·(2−i)  | 
| 13 |  3+2i  2+3i  | (p)  (p)  | 
| 16 | 4 | −(1+i)4 | 
| 17 |  1+4i  4+i  | (p)  (p)  | 
| 18 | 3+3i | (1+i)·3 | 
| 20 |  2+4i  4+2i  |  (1+i)2·(2−i)  −i·(1+i)2·(2+i)  | 
| 25 |  3+4i  4+3i 5  |  (2+i)2  i·(2−i)2 (2+i)·(2−i)  | 
| 26 |  1+5i  5+i  |  (1+i)·(3+2i)  (1+i)·(3−2i)  | 
| 29 |  2+5i  5+2i  | (p)  (p)  | 
| 32 | 4+4i | −(1+i)5 | 
| 34 |  3+5i  5+3i  |  (1+i)·(4+i)  (1+i)·(4−i)  | 
| 36 | 6 | −i·(1+i)2·3 | 
| 37 |  1+6i  6+i  | (p)  (p)  | 
| 40 |  2+6i  6+2i  |  −i·(1+i)3·(2+i)  −i·(1+i)3·(2−i)  | 
| 41 |  4+5i  5+4i  | (p)  (p)  | 
| 45 |  3+6i  6+3i  |  i·(2−i)·3  (2+i)·3  | 
| 49 | 7 | (p) | 
| 50 |  1+7i  5+5i 7+i  |  i·(1+i)·(2−i)2  (1+i)·(2+i)·(2−i) −i·(1+i)·(2+i)2  | 
| 52 |  4+6i  6+4i  |  (1+i)2·(3−2i)  −i·(1+i)2·(3+2i)  | 
| 53 |  2+7i  7+2i  | (p)  (p)  | 
| 58 |  3+7i  7+3i  |  (1+i)·(5+2i)  (1+i)·(5−2i)  | 
| 61 |  5+6i  6+5i  | (p)  (p)  | 
| 64 | 8 | i·(1+i)6 | 
| 65 |  1+8i  4+7i 7+4i 8+i  |  i·(2+i)·(3−2i)  (2+i)·(3+2i) i·(2−i)·(3−2i) (2−i)·(3+2i)  | 
| 68 |  2+8i  8+2i  |  (1+i)2·(4−i)  −i·(1+i)2·(4+i)  | 
| 72 | 6+6i | −i·(1+i)3·3 | 
| 73 |  3+8i  8+3i  | (p)  (p)  | 
| 74 |  5+7i  7+5i  |  (1+i)·(6+i)  (1+i)·(6−i)  | 
| 80 |  4+8i  8+4i  |  −i·(1+i)4·(2−i)  −(1+i)4·(2+i)  | 
| 81 | 9 | 32 | 
| 82 |  1+9i  9+i  |  (1+i)·(5+4i)  (1+i)·(5−4i)  | 
| 85 |  2+9i  6+7i 7+6i 9+2i  |  i·(2−i)·(4+i)  i·(2−i)·(4−i) (2+i)·(4+i) (2+i)·(4−i)  | 
| 89 |  5+8i  8+5i  | (p)  (p)  | 
| 90 |  3+9i  9+3i  |  (1+i)·(2+i)·3  (1+i)·(2−i)·3  | 
| 97 |  4+9i  9+4i  | (p)  (p)  | 
| 98 | 7+7i | (1+i)·7 | 
| 100 |  6+8i  8+6i 10  |  −i·(1+i)2·(2+i)2  (1+i)2·(2−i)2 −i·(1+i)2·(2+i)·(2−i)  | 
| 101 |  1+10i  10+i  | (p)  (p)  | 
| 104 |  2+10i  10+2i  |  −i·(1+i)3·(3+2i)  −i·(1+i)3·(3−2i)  | 
| 106 |  5+9i  9+5i  |  (1+i)·(7+2i)  (1+i)·(7−2i)  | 
| 109 |  3+10i  10+3i  | (p)  (p)  | 
| 113 |  7+8i  8+7i  | (p)  (p)  | 
| 116 |  4+10i  10+4i  |  (1+i)2·(5−2i)  −i·(1+i)2·(5+2i)  | 
| 117 |  6+9i  9+6i  |  i·3·(3−2i)  3·(3+2i)  | 
| 121 | 11 | (p) | 
| 122 |  1+11i  11+i  |  (1+i)·(6+5i)  (1+i)·(6−5i)  | 
| 125 |  2+11i  5+10i 10+5i 11+2i  |  (2+i)3  i·(2+i)·(2−i)2 (2+i)2·(2−i) i·(2−i)3  | 
| 128 | 8+8i | i·(1+i)7 | 
| 130 |  3+11i  7+9i 9+7i 11+3i  |  i·(1+i)·(2−i)·(3−2i)  (1+i)·(2−i)·(3+2i) (1+i)·(2+i)·(3−2i) −i·(1+i)·(2+i)·(3+2i)  | 
| 136 |  6+10i  10+6i  |  −i·(1+i)3·(4+i)  −i·(1+i)3·(4−i)  | 
| 137 |  4+11i  11+4i  | (p)  (p)  | 
| 144 | 12 | −(1+i)4·3 | 
| 145 |  1+12i  8+9i 9+8i 12+i  |  i·(2−i)·(5+2i)  (2+i)·(5+2i) i·(2−i)·(5−2i) (2+i)·(5−2i)  | 
| 146 |  5+11i  11+5i  |  (1+i)·(8+3i)  (1+i)·(8−3i)  | 
| 148 |  2+12i  12+2i  |  (1+i)2·(6−i)  −i·(1+i)2·(6+i)  | 
| 149 |  7+10i  10+7i  | (p)  (p)  | 
| 153 |  3+12i  12+3i  |  i·3·(4−i)  3·(4+i)  | 
| 157 |  6+11i  11+6i  | (p)  (p)  | 
| 160 |  4+12i  12+4i  |  −(1+i)5·(2+i)  −(1+i)5·(2−i)  | 
| 162 | 9+9i | (1+i)·32 | 
| 164 |  8+10i  10+8i  |  (1+i)2·(5−4i)  −i·(1+i)2·(5+4i)  | 
| 169 |  5+12i  12+5i 13  |  (3+2i)2  i·(3−2i)2 (3+2i)·(3−2i)  | 
| 170 |  1+13i  7+11i 11+7i 13+i  |  (1+i)·(2+i)·(4+i)  (1+i)·(2+i)·(4−i) (1+i)·(2−i)·(4+i) (1+i)·(2−i)·(4−i)  | 
| 173 |  2+13i  13+2i  | (p)  (p)  | 
| 178 |  3+13i  13+3i  |  (1+i)·(8+5i)  (1+i)·(8−5i)  | 
| 180 |  6+12i  12+6i  |  (1+i)2·(2−i)·3  −i·(1+i)2·(2+i)·3  | 
| 181 |  9+10i  10+9i  | (p)  (p)  | 
| 185 |  4+13i  8+11i 11+8i 13+4i  |  i·(2−i)·(6+i)  i·(2−i)·(6−i) (2+i)·(6+i) (2+i)·(6−i)  | 
| 193 |  7+12i  12+7i  | (p)  (p)  | 
| 194 |  5+13i  13+5i  |  (1+i)·(9+4i)  (1+i)·(9−4i)  | 
| 196 | 14 | −i·(1+i)2·7 | 
| 197 |  1+14i  14+i  | (p)  (p)  | 
| 200 |  2+14i  10+10i 14+2i  |  (1+i)3·(2−i)2  −i·(1+i)3·(2+i)·(2−i) −(1+i)3·(2+i)2  | 
| 202 |  9+11i  11+9i  |  (1+i)·(10+i)  (1+i)·(10−i)  | 
| 205 |  3+14i  6+13i 13+6i 14+3i  |  i·(2+i)·(5−4i)  (2+i)·(5+4i) i·(2−i)·(5−4i) (2−i)·(5+4i)  | 
| 208 |  8+12i  12+8i  |  −i·(1+i)4·(3−2i)  −(1+i)4·(3+2i)  | 
| 212 |  4+14i  14+4i  |  (1+i)2·(7−2i)  −i·(1+i)2·(7+2i)  | 
| 218 |  7+13i  13+7i  |  (1+i)·(10+3i)  (1+i)·(10−3i)  | 
| 221 |  5+14i  10+11i 11+10i 14+5i  |  i·(3−2i)·(4+i)  (3+2i)·(4+i) i·(3−2i)·(4−i) (3+2i)·(4−i)  | 
| 225 |  9+12i  12+9i 15  |  (2+i)2·3  i·(2−i)2·3 (2+i)·(2−i)·3  | 
| 226 |  1+15i  15+i  |  (1+i)·(8+7i)  (1+i)·(8−7i)  | 
| 229 |  2+15i  15+2i  | (p)  (p)  | 
| 232 |  6+14i  14+6i  |  −i·(1+i)3·(5+2i)  −i·(1+i)3·(5−2i)  | 
| 233 |  8+13i  13+8i  | (p)  (p)  | 
| 234 |  3+15i  15+3i  |  (1+i)·3·(3+2i)  (1+i)·3·(3−2i)  | 
| 241 |  4+15i  15+4i  | (p)  (p)  | 
| 242 | 11+11i | (1+i)·11 | 
| 244 |  10+12i  12+10i  |  (1+i)2·(6−5i)  −i·(1+i)2·(6+5i)  | 
| 245 |  7+14i  14+7i  |  i·(2−i)·7  (2+i)·7  | 
| 250 |  5+15i  9+13i 13+9i 15+5i  |  (1+i)·(2+i)2·(2−i)  i·(1+i)·(2−i)3 −i·(1+i)·(2+i)3 (1+i)·(2+i)·(2−i)2  | 
| norm | integer | factors | 
|---|---|---|
| 256 | 16 | (1+i)8 | 
| 257 |  1+16i  16+i  | (p)  (p)  | 
| 260 |  2+16i  8+14i 14+8i 16+2i  |  (1+i)2·(2+i)·(3−2i)  −i·(1+i)2·(2+i)·(3+2i) (1+i)2·(2−i)·(3−2i) −i·(1+i)2·(2−i)·(3+2i)  | 
| 261 |  6+15i  15+6i  |  i·3·(5−2i)  3·(5+2i)  | 
| 265 |  3+16i  11+12i 12+11i 16+3i  |  i·(2−i)·(7+2i)  i·(2−i)·(7−2i) (2+i)·(7+2i) (2+i)·(7−2i)  | 
| 269 |  10+13i  13+10i  | (p)  (p)  | 
| 272 |  4+16i  16+4i  |  −i·(1+i)4·(4−i)  −(1+i)4·(4+i)  | 
| 274 |  7+15i  15+7i  |  (1+i)·(11+4i)  (1+i)·(11−4i)  | 
| 277 |  9+14i  14+9i  | (p)  (p)  | 
| 281 |  5+16i  16+5i  | (p)  (p)  | 
| 288 | 12+12i | −(1+i)5·3 | 
| 289 |  8+15i  15+8i 17  |  i·(4−i)2  (4+i)2 (4+i)·(4−i)  | 
| 290 |  1+17i  11+13i 13+11i 17+i  |  i·(1+i)·(2−i)·(5−2i)  (1+i)·(2+i)·(5−2i) (1+i)·(2−i)·(5+2i) −i·(1+i)·(2+i)·(5+2i)  | 
| 292 |  6+16i  16+6i  |  (1+i)2·(8−3i)  −i·(1+i)2·(8+3i)  | 
| 293 |  2+17i  17+2i  | (p)  (p)  | 
| 296 |  10+14i  14+10i  |  −i·(1+i)3·(6+i)  −i·(1+i)3·(6−i)  | 
| 298 |  3+17i  17+3i  |  (1+i)·(10+7i)  (1+i)·(10−7i)  | 
| 305 |  4+17i  7+16i 16+7i 17+4i  |  i·(2+i)·(6−5i)  (2+i)·(6+5i) i·(2−i)·(6−5i) (2−i)·(6+5i)  | 
| 306 |  9+15i  15+9i  |  (1+i)·3·(4+i)  (1+i)·3·(4−i)  | 
| 313 |  12+13i  13+12i  | (p)  (p)  | 
| 314 |  5+17i  17+5i  |  (1+i)·(11+6i)  (1+i)·(11−6i)  | 
| 317 |  11+14i  14+11i  | (p)  (p)  | 
| 320 |  8+16i  16+8i  |  −(1+i)6·(2−i)  i·(1+i)6·(2+i)  | 
| 324 | 18 | −i·(1+i)2·32 | 
| 325 |  1+18i  6+17i 10+15i 15+10i 17+6i 18+i  |  (2+i)2·(3+2i)  i·(2−i)2·(3+2i) i·(2+i)·(2−i)·(3−2i) (2+i)·(2−i)·(3+2i) (2+i)2·(3−2i) i·(2−i)2·(3−2i)  | 
| 328 |  2+18i  18+2i  |  −i·(1+i)3·(5+4i)  −i·(1+i)3·(5−4i)  | 
| 333 |  3+18i  18+3i  |  i·3·(6−i)  3·(6+i)  | 
| 337 |  9+16i  16+9i  | (p)  (p)  | 
| 338 |  7+17i  13+13i 17+7i  |  i·(1+i)·(3−2i)2  (1+i)·(3+2i)·(3−2i) −i·(1+i)·(3+2i)2  | 
| 340 |  4+18i  12+14i 14+12i 18+4i  |  (1+i)2·(2−i)·(4+i)  (1+i)2·(2−i)·(4−i) −i·(1+i)2·(2+i)·(4+i) −i·(1+i)2·(2+i)·(4−i)  | 
| 346 |  11+15i  15+11i  |  (1+i)·(13+2i)  (1+i)·(13−2i)  | 
| 349 |  5+18i  18+5i  | (p)  (p)  | 
| 353 |  8+17i  17+8i  | (p)  (p)  | 
| 356 |  10+16i  16+10i  |  (1+i)2·(8−5i)  −i·(1+i)2·(8+5i)  | 
| 360 |  6+18i  18+6i  |  −i·(1+i)3·(2+i)·3  −i·(1+i)3·(2−i)·3  | 
| 361 | 19 | (p) | 
| 362 |  1+19i  19+i  |  (1+i)·(10+9i)  (1+i)·(10−9i)  | 
| 365 |  2+19i  13+14i 14+13i 19+2i  |  i·(2−i)·(8+3i)  (2+i)·(8+3i) i·(2−i)·(8−3i) (2+i)·(8−3i)  | 
| 369 |  12+15i  15+12i  |  i·3·(5−4i)  3·(5+4i)  | 
| 370 |  3+19i  9+17i 17+9i 19+3i  |  (1+i)·(2+i)·(6+i)  (1+i)·(2+i)·(6−i) (1+i)·(2−i)·(6+i) (1+i)·(2−i)·(6−i)  | 
| 373 |  7+18i  18+7i  | (p)  (p)  | 
| 377 |  4+19i  11+16i 16+11i 19+4i  |  i·(3−2i)·(5+2i)  (3+2i)·(5+2i) i·(3−2i)·(5−2i) (3+2i)·(5−2i)  | 
| 386 |  5+19i  19+5i  |  (1+i)·(12+7i)  (1+i)·(12−7i)  | 
| 388 |  8+18i  18+8i  |  (1+i)2·(9−4i)  −i·(1+i)2·(9+4i)  | 
| 389 |  10+17i  17+10i  | (p)  (p)  | 
| 392 | 14+14i | −i·(1+i)3·7 | 
| 394 |  13+15i  15+13i  |  (1+i)·(14+i)  (1+i)·(14−i)  | 
| 397 |  6+19i  19+6i  | (p)  (p)  | 
| 400 |  12+16i  16+12i 20  |  −(1+i)4·(2+i)2  −i·(1+i)4·(2−i)2 −(1+i)4·(2+i)·(2−i)  | 
| 401 |  1+20i  20+i  | (p)  (p)  | 
| 404 |  2+20i  20+2i  |  (1+i)2·(10−i)  −i·(1+i)2·(10+i)  | 
| 405 |  9+18i  18+9i  |  i·(2−i)·32  (2+i)·32  | 
| 409 |  3+20i  20+3i  | (p)  (p)  | 
| 410 |  7+19i  11+17i 17+11i 19+7i  |  i·(1+i)·(2−i)·(5−4i)  (1+i)·(2−i)·(5+4i) (1+i)·(2+i)·(5−4i) −i·(1+i)·(2+i)·(5+4i)  | 
| 416 |  4+20i  20+4i  |  −(1+i)5·(3+2i)  −(1+i)5·(3−2i)  | 
| 421 |  14+15i  15+14i  | (p)  (p)  | 
| 424 |  10+18i  18+10i  |  −i·(1+i)3·(7+2i)  −i·(1+i)3·(7−2i)  | 
| 425 |  5+20i  8+19i 13+16i 16+13i 19+8i 20+5i  |  i·(2+i)·(2−i)·(4−i)  (2+i)2·(4+i) i·(2−i)2·(4+i) (2+i)2·(4−i) i·(2−i)2·(4−i) (2+i)·(2−i)·(4+i)  | 
| 433 |  12+17i  17+12i  | (p)  (p)  | 
| 436 |  6+20i  20+6i  |  (1+i)2·(10−3i)  −i·(1+i)2·(10+3i)  | 
| 441 | 21 | 3·7 | 
| 442 |  1+21i  9+19i 19+9i 21+i  |  i·(1+i)·(3−2i)·(4−i)  (1+i)·(3+2i)·(4−i) (1+i)·(3−2i)·(4+i) −i·(1+i)·(3+2i)·(4+i)  | 
| 445 |  2+21i  11+18i 18+11i 21+2i  |  i·(2+i)·(8−5i)  (2+i)·(8+5i) i·(2−i)·(8−5i) (2−i)·(8+5i)  | 
| 449 |  7+20i  20+7i  | (p)  (p)  | 
| 450 |  3+21i  15+15i 21+3i  |  i·(1+i)·(2−i)2·3  (1+i)·(2+i)·(2−i)·3 −i·(1+i)·(2+i)2·3  | 
| 452 |  14+16i  16+14i  |  (1+i)2·(8−7i)  −i·(1+i)2·(8+7i)  | 
| 457 |  4+21i  21+4i  | (p)  (p)  | 
| 458 |  13+17i  17+13i  |  (1+i)·(15+2i)  (1+i)·(15−2i)  | 
| 461 |  10+19i  19+10i  | (p)  (p)  | 
| 464 |  8+20i  20+8i  |  −i·(1+i)4·(5−2i)  −(1+i)4·(5+2i)  | 
| 466 |  5+21i  21+5i  |  (1+i)·(13+8i)  (1+i)·(13−8i)  | 
| 468 |  12+18i  18+12i  |  (1+i)2·3·(3−2i)  −i·(1+i)2·3·(3+2i)  | 
| 477 |  6+21i  21+6i  |  i·3·(7−2i)  3·(7+2i)  | 
| 481 |  9+20i  15+16i 16+15i 20+9i  |  i·(3−2i)·(6+i)  i·(3−2i)·(6−i) (3+2i)·(6+i) (3+2i)·(6−i)  | 
| 482 |  11+19i  19+11i  |  (1+i)·(15+4i)  (1+i)·(15−4i)  | 
| 484 | 22 | −i·(1+i)2·11 | 
| 485 |  1+22i  14+17i 17+14i 22+i  |  i·(2−i)·(9+4i)  (2+i)·(9+4i) i·(2−i)·(9−4i) (2+i)·(9−4i)  | 
| 488 |  2+22i  22+2i  |  −i·(1+i)3·(6+5i)  −i·(1+i)3·(6−5i)  | 
| 490 |  7+21i  21+7i  |  (1+i)·(2+i)·7  (1+i)·(2−i)·7  | 
| 493 |  3+22i  13+18i 18+13i 22+3i  |  i·(4+i)·(5−2i)  i·(4−i)·(5−2i) (4+i)·(5+2i) (4−i)·(5+2i)  | 
| 500 |  4+22i  10+20i 20+10i 22+4i  |  −i·(1+i)2·(2+i)3  (1+i)2·(2+i)·(2−i)2 −i·(1+i)2·(2+i)2·(2−i) (1+i)2·(2−i)3  | 
| norm | integer | factors | 
|---|---|---|
| 505 |  8+21i  12+19i 19+12i 21+8i  |  i·(2−i)·(10+i)  i·(2−i)·(10−i) (2+i)·(10+i) (2+i)·(10−i)  | 
| 509 |  5+22i  22+5i  | (p)  (p)  | 
| 512 | 16+16i | (1+i)9 | 
| 514 |  15+17i  17+15i  |  (1+i)·(16+i)  (1+i)·(16−i)  | 
| 520 |  6+22i  14+18i 18+14i 22+6i  |  (1+i)3·(2−i)·(3−2i)  −i·(1+i)3·(2−i)·(3+2i) −i·(1+i)3·(2+i)·(3−2i) −(1+i)3·(2+i)·(3+2i)  | 
| 521 |  11+20i  20+11i  | (p)  (p)  | 
| 522 |  9+21i  21+9i  |  (1+i)·3·(5+2i)  (1+i)·3·(5−2i)  | 
| 529 | 23 | (p) | 
| 530 |  1+23i  13+19i 19+13i 23+i  |  (1+i)·(2+i)·(7+2i)  (1+i)·(2+i)·(7−2i) (1+i)·(2−i)·(7+2i) (1+i)·(2−i)·(7−2i)  | 
| 533 |  2+23i  7+22i 22+7i 23+2i  |  i·(3+2i)·(5−4i)  (3+2i)·(5+4i) i·(3−2i)·(5−4i) (3−2i)·(5+4i)  | 
| 538 |  3+23i  23+3i  |  (1+i)·(13+10i)  (1+i)·(13−10i)  | 
| 541 |  10+21i  21+10i  | (p)  (p)  | 
| 544 |  12+20i  20+12i  |  −(1+i)5·(4+i)  −(1+i)5·(4−i)  | 
| 545 |  4+23i  16+17i 17+16i 23+4i  |  i·(2−i)·(10+3i)  i·(2−i)·(10−3i) (2+i)·(10+3i) (2+i)·(10−3i)  | 
| 548 |  8+22i  22+8i  |  (1+i)2·(11−4i)  −i·(1+i)2·(11+4i)  | 
| 549 |  15+18i  18+15i  |  i·3·(6−5i)  3·(6+5i)  | 
| 554 |  5+23i  23+5i  |  (1+i)·(14+9i)  (1+i)·(14−9i)  | 
| 557 |  14+19i  19+14i  | (p)  (p)  | 
| 562 |  11+21i  21+11i  |  (1+i)·(16+5i)  (1+i)·(16−5i)  | 
| 565 |  6+23i  9+22i 22+9i 23+6i  |  i·(2+i)·(8−7i)  (2+i)·(8+7i) i·(2−i)·(8−7i) (2−i)·(8+7i)  | 
| 569 |  13+20i  20+13i  | (p)  (p)  | 
| 576 | 24 | i·(1+i)6·3 | 
| 577 |  1+24i  24+i  | (p)  (p)  | 
| 578 |  7+23i  17+17i 23+7i  |  (1+i)·(4+i)2  (1+i)·(4+i)·(4−i) (1+i)·(4−i)2  | 
| 580 |  2+24i  16+18i 18+16i 24+2i  |  (1+i)2·(2−i)·(5+2i)  −i·(1+i)2·(2+i)·(5+2i) (1+i)2·(2−i)·(5−2i) −i·(1+i)2·(2+i)·(5−2i)  | 
| 584 |  10+22i  22+10i  |  −i·(1+i)3·(8+3i)  −i·(1+i)3·(8−3i)  | 
| 585 |  3+24i  12+21i 21+12i 24+3i  |  i·(2+i)·3·(3−2i)  (2+i)·3·(3+2i) i·(2−i)·3·(3−2i) (2−i)·3·(3+2i)  | 
| 586 |  15+19i  19+15i  |  (1+i)·(17+2i)  (1+i)·(17−2i)  | 
| 592 |  4+24i  24+4i  |  −i·(1+i)4·(6−i)  −(1+i)4·(6+i)  | 
| 593 |  8+23i  23+8i  | (p)  (p)  | 
| 596 |  14+20i  20+14i  |  (1+i)2·(10−7i)  −i·(1+i)2·(10+7i)  | 
| 601 |  5+24i  24+5i  | (p)  (p)  | 
| 605 |  11+22i  22+11i  |  i·(2−i)·11  (2+i)·11  | 
| 610 |  9+23i  13+21i 21+13i 23+9i  |  i·(1+i)·(2−i)·(6−5i)  (1+i)·(2−i)·(6+5i) (1+i)·(2+i)·(6−5i) −i·(1+i)·(2+i)·(6+5i)  | 
| 612 |  6+24i  24+6i  |  (1+i)2·3·(4−i)  −i·(1+i)2·3·(4+i)  | 
| 613 |  17+18i  18+17i  | (p)  (p)  | 
| 617 |  16+19i  19+16i  | (p)  (p)  | 
| 625 |  7+24i  15+20i 20+15i 24+7i 25  |  −(2−i)4  (2+i)3·(2−i) i·(2+i)·(2−i)3 −i·(2+i)4 (2+i)2·(2−i)2  | 
| 626 |  1+25i  25+i  |  (1+i)·(13+12i)  (1+i)·(13−12i)  | 
| 628 |  12+22i  22+12i  |  (1+i)2·(11−6i)  −i·(1+i)2·(11+6i)  | 
| 629 |  2+25i  10+23i 23+10i 25+2i  |  i·(4−i)·(6+i)  i·(4−i)·(6−i) (4+i)·(6+i) (4+i)·(6−i)  | 
| 634 |  3+25i  25+3i  |  (1+i)·(14+11i)  (1+i)·(14−11i)  | 
| 637 |  14+21i  21+14i  |  i·(3−2i)·7  (3+2i)·7  | 
| 640 |  8+24i  24+8i  |  i·(1+i)7·(2+i)  i·(1+i)7·(2−i)  | 
| 641 |  4+25i  25+4i  | (p)  (p)  | 
| 648 | 18+18i | −i·(1+i)3·32 | 
| 650 |  5+25i  11+23i 17+19i 19+17i 23+11i 25+5i  |  (1+i)·(2+i)·(2−i)·(3+2i)  (1+i)·(2+i)2·(3−2i) i·(1+i)·(2−i)2·(3−2i) −i·(1+i)·(2+i)2·(3+2i) (1+i)·(2−i)2·(3+2i) (1+i)·(2+i)·(2−i)·(3−2i)  | 
| 653 |  13+22i  22+13i  | (p)  (p)  | 
| 656 |  16+20i  20+16i  |  −i·(1+i)4·(5−4i)  −(1+i)4·(5+4i)  | 
| 657 |  9+24i  24+9i  |  i·3·(8−3i)  3·(8+3i)  | 
| 661 |  6+25i  25+6i  | (p)  (p)  | 
| 666 |  15+21i  21+15i  |  (1+i)·3·(6+i)  (1+i)·3·(6−i)  | 
| 673 |  12+23i  23+12i  | (p)  (p)  | 
| 674 |  7+25i  25+7i  |  (1+i)·(16+9i)  (1+i)·(16−9i)  | 
| 676 |  10+24i  24+10i 26  |  −i·(1+i)2·(3+2i)2  (1+i)2·(3−2i)2 −i·(1+i)2·(3+2i)·(3−2i)  | 
| 677 |  1+26i  26+i  | (p)  (p)  | 
| 680 |  2+26i  14+22i 22+14i 26+2i  |  −i·(1+i)3·(2+i)·(4+i)  −i·(1+i)3·(2+i)·(4−i) −i·(1+i)3·(2−i)·(4+i) −i·(1+i)3·(2−i)·(4−i)  | 
| 685 |  3+26i  18+19i 19+18i 26+3i  |  i·(2−i)·(11+4i)  (2+i)·(11+4i) i·(2−i)·(11−4i) (2+i)·(11−4i)  | 
| 689 |  8+25i  17+20i 20+17i 25+8i  |  i·(3−2i)·(7+2i)  (3+2i)·(7+2i) i·(3−2i)·(7−2i) (3+2i)·(7−2i)  | 
| 692 |  4+26i  26+4i  |  (1+i)2·(13−2i)  −i·(1+i)2·(13+2i)  | 
| 697 |  11+24i  16+21i 21+16i 24+11i  |  i·(4+i)·(5−4i)  (4+i)·(5+4i) i·(4−i)·(5−4i) (4−i)·(5+4i)  | 
| 698 |  13+23i  23+13i  |  (1+i)·(18+5i)  (1+i)·(18−5i)  | 
| 701 |  5+26i  26+5i  | (p)  (p)  | 
| 706 |  9+25i  25+9i  |  (1+i)·(17+8i)  (1+i)·(17−8i)  | 
| 709 |  15+22i  22+15i  | (p)  (p)  | 
| 712 |  6+26i  26+6i  |  −i·(1+i)3·(8+5i)  −i·(1+i)3·(8−5i)  | 
| 720 |  12+24i  24+12i  |  −i·(1+i)4·(2−i)·3  −(1+i)4·(2+i)·3  | 
| 722 | 19+19i | (1+i)·19 | 
| 724 |  18+20i  20+18i  |  (1+i)2·(10−9i)  −i·(1+i)2·(10+9i)  | 
| 725 |  7+26i  10+25i 14+23i 23+14i 25+10i 26+7i  |  (2+i)2·(5+2i)  i·(2+i)·(2−i)·(5−2i) i·(2−i)2·(5+2i) (2+i)2·(5−2i) (2+i)·(2−i)·(5+2i) i·(2−i)2·(5−2i)  | 
| 729 | 27 | 33 | 
| 730 |  1+27i  17+21i 21+17i 27+i  |  i·(1+i)·(2−i)·(8−3i)  (1+i)·(2+i)·(8−3i) (1+i)·(2−i)·(8+3i) −i·(1+i)·(2+i)·(8+3i)  | 
| 733 |  2+27i  27+2i  | (p)  (p)  | 
| 738 |  3+27i  27+3i  |  (1+i)·3·(5+4i)  (1+i)·3·(5−4i)  | 
| 740 |  8+26i  16+22i 22+16i 26+8i  |  (1+i)2·(2−i)·(6+i)  (1+i)2·(2−i)·(6−i) −i·(1+i)2·(2+i)·(6+i) −i·(1+i)2·(2+i)·(6−i)  | 
| 745 |  4+27i  13+24i 24+13i 27+4i  |  i·(2+i)·(10−7i)  (2+i)·(10+7i) i·(2−i)·(10−7i) (2−i)·(10+7i)  | 
| 746 |  11+25i  25+11i  |  (1+i)·(18+7i)  (1+i)·(18−7i)  | 
| norm | integer | factors | 
|---|---|---|
| 754 |  5+27i  15+23i 23+15i 27+5i  |  i·(1+i)·(3−2i)·(5−2i)  (1+i)·(3+2i)·(5−2i) (1+i)·(3−2i)·(5+2i) −i·(1+i)·(3+2i)·(5+2i)  | 
| 757 |  9+26i  26+9i  | (p)  (p)  | 
| 761 |  19+20i  20+19i  | (p)  (p)  | 
| 765 |  6+27i  18+21i 21+18i 27+6i  |  i·(2−i)·3·(4+i)  i·(2−i)·3·(4−i) (2+i)·3·(4+i) (2+i)·3·(4−i)  | 
| 769 |  12+25i  25+12i  | (p)  (p)  | 
| 772 |  14+24i  24+14i  |  (1+i)2·(12−7i)  −i·(1+i)2·(12+7i)  | 
| 773 |  17+22i  22+17i  | (p)  (p)  | 
| 776 |  10+26i  26+10i  |  −i·(1+i)3·(9+4i)  −i·(1+i)3·(9−4i)  | 
| 778 |  7+27i  27+7i  |  (1+i)·(17+10i)  (1+i)·(17−10i)  | 
| 784 | 28 | −(1+i)4·7 | 
| 785 |  1+28i  16+23i 23+16i 28+i  |  i·(2+i)·(11−6i)  (2+i)·(11+6i) i·(2−i)·(11−6i) (2−i)·(11+6i)  | 
| 788 |  2+28i  28+2i  |  (1+i)2·(14−i)  −i·(1+i)2·(14+i)  | 
| 793 |  3+28i  8+27i 27+8i 28+3i  |  i·(3+2i)·(6−5i)  (3+2i)·(6+5i) i·(3−2i)·(6−5i) (3−2i)·(6+5i)  | 
| 794 |  13+25i  25+13i  |  (1+i)·(19+6i)  (1+i)·(19−6i)  | 
| 797 |  11+26i  26+11i  | (p)  (p)  | 
| 800 |  4+28i  20+20i 28+4i  |  −i·(1+i)5·(2−i)2  −(1+i)5·(2+i)·(2−i) i·(1+i)5·(2+i)2  | 
| 801 |  15+24i  24+15i  |  i·3·(8−5i)  3·(8+5i)  | 
| 802 |  19+21i  21+19i  |  (1+i)·(20+i)  (1+i)·(20−i)  | 
| 808 |  18+22i  22+18i  |  −i·(1+i)3·(10+i)  −i·(1+i)3·(10−i)  | 
| 809 |  5+28i  28+5i  | (p)  (p)  | 
| 810 |  9+27i  27+9i  |  (1+i)·(2+i)·32  (1+i)·(2−i)·32  | 
| 818 |  17+23i  23+17i  |  (1+i)·(20+3i)  (1+i)·(20−3i)  | 
| 820 |  6+28i  12+26i 26+12i 28+6i  |  (1+i)2·(2+i)·(5−4i)  −i·(1+i)2·(2+i)·(5+4i) (1+i)2·(2−i)·(5−4i) −i·(1+i)2·(2−i)·(5+4i)  | 
| 821 |  14+25i  25+14i  | (p)  (p)  | 
| 829 |  10+27i  27+10i  | (p)  (p)  | 
| 832 |  16+24i  24+16i  |  −(1+i)6·(3−2i)  i·(1+i)6·(3+2i)  | 
| 833 |  7+28i  28+7i  |  i·(4−i)·7  (4+i)·7  | 
| 841 |  20+21i  21+20i 29  |  i·(5−2i)2  (5+2i)2 (5+2i)·(5−2i)  | 
| 842 |  1+29i  29+i  |  (1+i)·(15+14i)  (1+i)·(15−14i)  | 
| 845 |  2+29i  13+26i 19+22i 22+19i 26+13i 29+2i  |  −(2−i)·(3−2i)2  i·(2−i)·(3+2i)·(3−2i) i·(2+i)·(3−2i)2 (2−i)·(3+2i)2 (2+i)·(3+2i)·(3−2i) −i·(2+i)·(3+2i)2  | 
| 848 |  8+28i  28+8i  |  −i·(1+i)4·(7−2i)  −(1+i)4·(7+2i)  | 
| 850 |  3+29i  11+27i 15+25i 25+15i 27+11i 29+3i  |  (1+i)·(2+i)2·(4−i)  i·(1+i)·(2−i)2·(4−i) (1+i)·(2+i)·(2−i)·(4+i) (1+i)·(2+i)·(2−i)·(4−i) −i·(1+i)·(2+i)2·(4+i) (1+i)·(2−i)2·(4+i)  | 
| 853 |  18+23i  23+18i  | (p)  (p)  | 
| 857 |  4+29i  29+4i  | (p)  (p)  | 
| 865 |  9+28i  17+24i 24+17i 28+9i  |  i·(2−i)·(13+2i)  i·(2−i)·(13−2i) (2+i)·(13+2i) (2+i)·(13−2i)  | 
| 866 |  5+29i  29+5i  |  (1+i)·(17+12i)  (1+i)·(17−12i)  | 
| 872 |  14+26i  26+14i  |  −i·(1+i)3·(10+3i)  −i·(1+i)3·(10−3i)  | 
| 873 |  12+27i  27+12i  |  i·3·(9−4i)  3·(9+4i)  | 
| 877 |  6+29i  29+6i  | (p)  (p)  | 
| 881 |  16+25i  25+16i  | (p)  (p)  | 
| 882 | 21+21i | (1+i)·3·7 | 
| 884 |  10+28i  20+22i 22+20i 28+10i  |  (1+i)2·(3−2i)·(4+i)  −i·(1+i)2·(3+2i)·(4+i) (1+i)2·(3−2i)·(4−i) −i·(1+i)2·(3+2i)·(4−i)  | 
| 890 |  7+29i  19+23i 23+19i 29+7i  |  i·(1+i)·(2−i)·(8−5i)  (1+i)·(2−i)·(8+5i) (1+i)·(2+i)·(8−5i) −i·(1+i)·(2+i)·(8+5i)  | 
| 898 |  13+27i  27+13i  |  (1+i)·(20+7i)  (1+i)·(20−7i)  | 
| 900 |  18+24i  24+18i 30  |  −i·(1+i)2·(2+i)2·3  (1+i)2·(2−i)2·3 −i·(1+i)2·(2+i)·(2−i)·3  | 
| 901 |  1+30i  15+26i 26+15i 30+i  |  i·(4+i)·(7−2i)  i·(4−i)·(7−2i) (4+i)·(7+2i) (4−i)·(7+2i)  | 
| 904 |  2+30i  30+2i  |  −i·(1+i)3·(8+7i)  −i·(1+i)3·(8−7i)  | 
| 905 |  8+29i  11+28i 28+11i 29+8i  |  i·(2+i)·(10−9i)  (2+i)·(10+9i) i·(2−i)·(10−9i) (2−i)·(10+9i)  | 
| 909 |  3+30i  30+3i  |  i·3·(10−i)  3·(10+i)  | 
| 914 |  17+25i  25+17i  |  (1+i)·(21+4i)  (1+i)·(21−4i)  | 
| 916 |  4+30i  30+4i  |  (1+i)2·(15−2i)  −i·(1+i)2·(15+2i)  | 
| 922 |  9+29i  29+9i  |  (1+i)·(19+10i)  (1+i)·(19−10i)  | 
| 925 |  5+30i  14+27i 21+22i 22+21i 27+14i 30+5i  |  i·(2+i)·(2−i)·(6−i)  (2+i)2·(6+i) i·(2−i)2·(6+i) (2+i)2·(6−i) i·(2−i)2·(6−i) (2+i)·(2−i)·(6+i)  | 
| 928 |  12+28i  28+12i  |  −(1+i)5·(5+2i)  −(1+i)5·(5−2i)  | 
| 929 |  20+23i  23+20i  | (p)  (p)  | 
| 932 |  16+26i  26+16i  |  (1+i)2·(13−8i)  −i·(1+i)2·(13+8i)  | 
| 936 |  6+30i  30+6i  |  −i·(1+i)3·3·(3+2i)  −i·(1+i)3·3·(3−2i)  | 
| 937 |  19+24i  24+19i  | (p)  (p)  | 
| 941 |  10+29i  29+10i  | (p)  (p)  | 
| 949 |  7+30i  18+25i 25+18i 30+7i  |  i·(3−2i)·(8+3i)  (3+2i)·(8+3i) i·(3−2i)·(8−3i) (3+2i)·(8−3i)  | 
| 953 |  13+28i  28+13i  | (p)  (p)  | 
| 954 |  15+27i  27+15i  |  (1+i)·3·(7+2i)  (1+i)·3·(7−2i)  | 
| 961 | 31 | (p) | 
| 962 |  1+31i  11+29i 29+11i 31+i  |  (1+i)·(3+2i)·(6+i)  (1+i)·(3+2i)·(6−i) (1+i)·(3−2i)·(6+i) (1+i)·(3−2i)·(6−i)  | 
| 964 |  8+30i  30+8i  |  (1+i)2·(15−4i)  −i·(1+i)2·(15+4i)  | 
| 965 |  2+31i  17+26i 26+17i 31+2i  |  i·(2+i)·(12−7i)  (2+i)·(12+7i) i·(2−i)·(12−7i) (2−i)·(12+7i)  | 
| 968 | 22+22i | −i·(1+i)3·11 | 
| 970 |  3+31i  21+23i 23+21i 31+3i  |  i·(1+i)·(2−i)·(9−4i)  (1+i)·(2+i)·(9−4i) (1+i)·(2−i)·(9+4i) −i·(1+i)·(2+i)·(9+4i)  | 
| 976 |  20+24i  24+20i  |  −i·(1+i)4·(6−5i)  −(1+i)4·(6+5i)  | 
| 977 |  4+31i  31+4i  | (p)  (p)  | 
| 980 |  14+28i  28+14i  |  (1+i)2·(2−i)·7  −i·(1+i)2·(2+i)·7  | 
| 981 |  9+30i  30+9i  |  i·3·(10−3i)  3·(10+3i)  | 
| 985 |  12+29i  16+27i 27+16i 29+12i  |  i·(2−i)·(14+i)  i·(2−i)·(14−i) (2+i)·(14+i) (2+i)·(14−i)  | 
| 986 |  5+31i  19+25i 25+19i 31+5i  |  (1+i)·(4+i)·(5+2i)  (1+i)·(4−i)·(5+2i) (1+i)·(4+i)·(5−2i) (1+i)·(4−i)·(5−2i)  | 
| 997 |  6+31i  31+6i  | (p)  (p)  | 
| 1000 |  10+30i  18+26i 26+18i 30+10i  |  −i·(1+i)3·(2+i)2·(2−i)  (1+i)3·(2−i)3 −(1+i)3·(2+i)3 −i·(1+i)3·(2+i)·(2−i)2  | 
References
    
- Dresden, Greg; Dymacek, Wayne (2005). "Finding factors of factor rings over the Gaussian integers". American Mathematical Monthly. 112 (7): 602–611. doi:10.2307/30037545. JSTOR 30037545. MR 2158894.
 - Gethner, Ellen; Wagner, Stan; Wick, Brian (1998). "A stroll through the Gaussian primes". Amer. Math. Monthly. 105 (4): 327–337. doi:10.2307/2589708. JSTOR 2589708. MR 1614871.
 - Matsui, Hajime (2000). "A bound for the least Gaussian prime omega with alpha < arg(omega) < beta". Arch. Math. 74 (6): 423–431. doi:10.1007/s000130050463. MR 1753540.