List of quantum processors

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubits (Logical)Release dateQuantum Volume
RIKEN RIKENSuperconductingN/AN/AN/A53 qb effective (64 total)[2] March 27, 2023
GoogleN/ASuperconductingN/AN/A99.5%[3]20 qb2017
GoogleN/ASuperconducting7×7 latticeN/A99.7%[3]49 qb[4]Q4 2017 (planned)
GoogleBristleconeSuperconducting transmon6×12 latticeN/A99% (readout)
99.9% (1 qubit)
99.4% (2 qubits)
72 qb[5][6]March 5, 2018
GoogleSycamoreSuperconducting transmon9×6 latticeN/AN/A53 qb effective (54 total)2019
USTCJiuzhangPhotonicsN/AN/AN/A76 qb[7][8]2020
USTC ZuchongzhiSuperconductingN/AN/AN/A62 qb[9] 2020
Quandela Ascella Photonics N/A N/A 98.8% (1 qubit)
88.1% (2 qubits)
86.0% (3 qubits)
6 qb[10] 2022[11]
Xanadu Borealis[12] Photonics N/A N/A N/A 216 qb[12] 2022[12]
Xanadu X8 [13] Photonics N/A N/A N/A 8 qb 2020
Xanadu X12 Photonics N/A N/A N/A 12 qb 2020[13]
Xanadu X24 Photonics N/A N/A N/A 24 qb 2020[13]
IBMIBM Q 5 TenerifeSuperconductingbow tieN/A99.897% (average gate)
98.64% (readout)
5 qb2016[3]
IBM IBM Q 5 Yorktown Superconducting bow tie N/A 99.545% (average gate)
94.2% (readout)
5 qb
IBM IBM Q 14 Melbourne Superconducting N/A N/A 99.735% (average gate)
97.13% (readout)
14 qb
IBMIBM Q 16 RüschlikonSuperconducting2×8 latticeN/A99.779% (average gate)
94.24% (readout)
16 qb[14]May 17, 2017
(Retired: 26 September 2018)[15]
IBMIBM Q 17SuperconductingN/AN/AN/A17 qb[14]May 17, 2017
IBMIBM Q 20 TokyoSuperconducting5×4 latticeN/A99.812% (average gate)
93.21% (readout)
20 qb[16]November 10, 2017
IBM IBM Q 20 Austin Superconducting 5×4 lattice N/A N/A 20 qb (Retired: 4 July 2018)[15]
IBMIBM Q 50 prototypeSuperconducting transmonN/AN/AN/A50 qb[16]
IBMIBM Q 53SuperconductingN/AN/AN/A53 qbOctober 2019
IBMIBM EagleSuperconductingN/AN/AN/A127 qbNovember 2021
IBMIBM OspreySuperconductingN/AN/AN/A433 qbNovember 2022
Intel17-Qubit Superconducting Test ChipSuperconductingN/A40-pin cross gapN/A17 qb[17][18]October 10, 2017
IntelTangle LakeSuperconductingN/A108-pin cross gapN/A49 qb[19]January 9, 2018
Rigetti Agave Superconducting N/A N/A 96% (Single-qubit gates)

87% (Two-qubit gates)

8 qb June 4, 2018[20]
RigettiAcornSuperconducting transmonN/AN/A98.63% (Single-qubit gates)

87.5% (Two-qubit gates)

19 qb[21]December 17, 2017
Rigetti Aspen-1 Superconducting N/A N/A 93.23% (Single-qubit gates)

90.84% (Two-qubit gates)

16 qb November 30, 2018[20]
Rigetti Aspen-4 99.88% (Single-qubit gates)

94.42% (Two-qubit gates)

13 qb March 10, 2019
Rigetti Aspen-7 99.23% (Single-qubit gates)

95.2% (Two-qubit gates)

28 qb November 15, 2019
Rigetti Aspen-8 99.22% (Single-qubit gates)

94.34% (Two-qubit gates)

31 qb May 5, 2020
Rigetti Aspen-9 99.39% (Single-qubit gates)

94.28% (Two-qubit gates)

32 qb February 6, 2021
Rigetti Aspen-10 99.37% (Single-qubit gates)

94.66% (Two-qubit gates)

32 qb November 4, 2021
Rigetti Aspen-11 Octagonal[22] 99.8% (Single-qubit gates) 92.7% (Two-qubit gates CZ) 91.0% (Two-qubit gates XY) 40 qb December 15, 2021
Rigetti Aspen-M-1 Superconducting transmon Octagonal[22] 99.8% (Single-qubit gates) 93.7% (Two-qubit gates CZ) 94.6% (Two-qubit gates XY) 80 qb February 15, 2022 8[22]
Rigetti Aspen-M-2 Superconducting transmon 99.8% (Single-qubit gates) 91.3% (Two-qubit gates CZ) 90.0% (Two-qubit gates XY) 80 qb August 1, 2022
RigettiAspen-M-3Superconducting transmonN/AN/A99.9% (Single-qubit gates) 94.7% (Two-qubit gates CZ) 95.1% (Two-qubit gates XY)80 qb[23]December 2, 2022
IBM IBM Armonk[24] Superconducting Single Qubit N/A N/A 1 qb October 16, 2019
IBM IBM Ourense[24] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM Vigo[24] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM London[24] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Burlington[24] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Essex[24] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Athens [25] Superconducting N/A N/A 5 qb 32[26]
IBM IBM Belem[25] Superconducting Falcon r4T[22] N/A N/A 5 qb 16[22]
IBM IBM Bogotá [25] Superconducting Falcon r4L[22] N/A N/A 5 qb 32[22]
IBM IBM Casablanca [25] Superconducting Falcon r4H[22] N/A N/A 7 qb (Retired - March 2022) 32[22]
IBM IBM Dublin [25] Superconducting N/A N/A 27 qb 64
IBM IBM Guadalupe [25] Superconducting Falcon r4P[22] N/A N/A 16 qb 32[22]
IBM IBM Kolkata Superconducting N/A N/A 27 qb 128
IBM IBM Lima [25] Superconducting Falcon r4T[22] N/A N/A 5 qb 8[22]
IBM IBM Manhattan [25] Superconducting N/A N/A 65 qb 32[26]
IBM IBM Montreal [25] Superconducting Falcon r4[22] N/A N/A 27 qb 128[27][22]
IBM IBM Mumbai [25] Superconducting Falcon r5.1[22] N/A N/A 27 qb 128[22]
IBM IBM Paris [25] Superconducting N/A N/A 27 qb 32[26]
IBM IBM Quito [25] Superconducting Falcon r4T[22] N/A N/A 5 qb 16[22]
IBM IBM Rome [25] Superconducting N/A N/A 5 qb 32[26]
IBM IBM Santiago [25] Superconducting N/A N/A 5 qb 32[26]
IBM IBM Sydney [25] Superconducting Falcon r4[22] N/A N/A 27 qb 32[22]
IBM IBM Toronto [25] Superconducting Falcon r4[22] N/A N/A 27 qb 32[22]
QuTech at TU Delft Spin-2 Semiconductor spin qubits 99% (average gate)
85%(readout)[28]
2 qb 2020
QuTech at TU Delft Starmon-5 Superconducting X configuration 97% (readout)[29] 5 qb 2020
IonQ Harmony Trapped ion All-to-All[22] 11 qb[30] 2020 8[22]
IonQ Aria Trapped ion All-to-All[22] 25 qb[30] 2022
IonQ Forte Trapped ion 32x1 chain[31]All-to-All[22] N/A 99.98% (1 qubit)
98.5-99.3% (2 qubit)[31]
32 qb[30] 2022
Oxford Quantum Circuits Lucy[32] Superconducting N/A 8 qb 2022
Quantinuum H2[33] Trapped ion Racetrack, All-to-All N/A 99.997% (1 qubit)
99.8% (2 qubit)
32 qb May 2023 65,536[34]
Quantinuum H1-1[35] Trapped ion 15×15 (Circuit Size) N/A 20 qb 2022 32,768[36]
Quantinuum H1-2 [35] Trapped ion All-to-All[22] N/A 12 qb 2022 4096[37]
Quantware Soprano[38] Superconducting N/A 99.9% (single-qubit gates) 5 qb July 2021
Quantware Contralto[39] Superconducting N/A 99.9% (single-qubit gates) 25 qb March 7, 2022[40]
Quantware Tenor[41] Superconducting N/A 64 qb February 23, 2023
Alpine Quantum Technologies PINE System[42] Trapped ion N/A 24 qb[43] June 7, 2021 128[44]
Atom Computing Phoenix Neutral atoms in optical lattices N/A 100 qb[45] August 10, 2021
SpinQ Triangulum Nuclear magnetic resonance N/A 3 qb[46] September 2021
M Squared Lasers Maxwell Neutral atoms in optical lattices N/A 400 qb[47] November 2022

Annealing quantum processors

These QPUs are based on quantum annealing, not to be confused with digital annealing.[48]

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubitsRelease date
D-WaveD-Wave One (Rainier)SuperconductingC4 = Chimera(4,4,4)[49] = 4×4 K4,4N/AN/A128 qb11 May 2011
D-WaveD-Wave TwoSuperconductingC8 = Chimera(8,8,4)[49] = 8×8 K4,4N/AN/A512 qb2013
D-WaveD-Wave 2XSuperconductingC12 = Chimera(12,12,4)[49] = 12×12 K4,4N/AN/A1152 qb2015
D-WaveD-Wave 2000QSuperconductingC16 = Chimera(16,16,4)[49] = 16×16 K4,4N/AN/A2048 qb2017
D-WaveD-Wave AdvantageSuperconductingPegasus P16[50]N/AN/A5760 qb2020

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubitsRelease date
QuEraAquilaNeutral atomsN/AN/AN/A256 qbNov 2022

See also

References

  1. Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
  2. "RIKEN et al., Japan's first superconducting quantum computer. Cloud services that can be used externally-PC Watch". Japan Posts English. 2023-03-27. Retrieved 2023-04-29.
  3. Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017-10-18.
  4. Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. Retrieved 2017-10-18.
  5. "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
  6. Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. Retrieved 2018-06-27.
  7. Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711.
  8. December 2020, Rafi Letzter-Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020-12-19.
  9. Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". PhysRevLett. 127 (18). arXiv:2106.14734. doi:10.1103/PhysRevLett.127.180501. S2CID 235658633.
  10. Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
  11. "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr. Le Monde. 22 November 2022.
  12. Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949. PMID 35650354. S2CID 249276257.
  13. "A new kind of quantum". spie.org. Retrieved 2021-01-09.
  14. "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. Retrieved 2017-10-18.
  15. "Quantum devices & simulators". IBM Q. 2018-06-05. Retrieved 2019-03-29.
  16. "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Retrieved 10 November 2017.
  17. "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. Retrieved 2017-10-18.
  18. Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. Retrieved 2017-10-18.
  19. "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. Retrieved 2018-01-14.
  20. "QPU". Rigetti Computing. Archived from the original on 2019-05-16. Retrieved 2019-03-24.
  21. "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. Retrieved 2018-03-21.
  22. Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering. 3: 1–19. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808.
  23. "Aspen-M-3 Quantum Processor". Retrieved 2023-02-20.
  24. "IBM Q Experience". IBM Q Experience. Retrieved 2020-01-04.
  25. IBM Quantum. https://quantum-computing.ibm.com/, 2021
  26. IBM Research Blog. https://www.ibm.com/blogs/research/2020/07/qv32-performance/, 2021
  27. Gambetta, Jay. "On the same system (IBM Q System One - Montreal) that we hit a quantum volume of 64 the team recently achieved a quantum volume of 128". Twitter. Archived from the original on 2022-10-21. Retrieved 2023-03-20.
  28. "Spin-2". Quantum Inspire. Retrieved 5 May 2021.
  29. "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.
  30. "IonQ | Trapped Ion Quantum Computing". IonQ. Retrieved 2023-05-02.
  31. arXiv:2009.11482
  32. "Lucy". Oxford Quantum Circuits. Retrieved 20 Feb 2023.
  33. "Quantinuum H2 Product Data Sheet" (PDF).
  34. "Quantinuum | Hardware | System Model H2". www.quantinuum.com. Retrieved 2023-05-12.
  35. "Quantinuum System Model H1 Product Data Sheet" (PDF). Oxford Quantum Circuits. Retrieved 20 Feb 2023.
  36. "Quantum Volume reaches 5 digits for the first time: 5 perspectives on what it means for quantum computing". Quantinuum. Retrieved 24 Feb 2023.
  37. "Quantinuum Announces Quantum Volume 4096 Achievement". Quantinuum. Retrieved 24 Feb 2023.
  38. "Soprano specs". Quantware. Retrieved 1 Feb 2023.
  39. "Contralto specs". Quantware. Retrieved 21 Feb 2023.
  40. "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". Quantware. Retrieved 21 Feb 2023.
  41. "Tenor specs". Quantware. Retrieved 26 Feb 2023.
  42. "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". AQT. Retrieved 21 Feb 2023.
  43. Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2). arXiv:2101.11390. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119.
  44. "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". AQT. 8 February 2023. Retrieved 24 Feb 2023.
  45. Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications. 13. arXiv:2108.04790. doi:10.1038/s41467-022-29977-z. S2CID 236965948.
  46. "Triangulum3 qubits desktop NMR quantum computer". AQT. Retrieved 24 Feb 2023.
  47. "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR" (PDF). M Squared. Retrieved 12 April 2023.
  48. "Digital Annealer - Quantum Computing Technology". Fujitsu. Retrieved 12 April 2023.
  49. Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
  50. Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.