Urban ecosystem

In ecology, urban ecosystems are considered a ecosystem functional group within the intensive land-use biome. They are structurally complex ecosystems with highly heterogeneous and dynamic spatial structure that is created and maintained by humans. They include cities, smaller settlements and industrial areas, that are made up of diverse patch types (e.g. buildings, paved surfaces, transport infrastructure, parks and gardens, refuse areas). Urban ecosystems rely on large subsidies of imported water, nutrients, food and other resources. Compared to other natural and artificial ecosystems human population density is high, and their interaction with the different patch types produces emergent properties and complex feedbacks among ecosystem components.[1]

In socioecology, urban areas are considered part of a broader social-ecological system in which urban landscapes and urban human communities interact with other landscape elements.[2] Urbanization has large impacts on human and environmental health, and the study of urban ecosystems has led to proposals for sustainable urban designs and approaches to development of city fringe areas that can help reduce negative impact on surrounding environments and promote human well-being.[3]

Urban ecosystem research

Urban ecology is a relatively new field. Because of this, the research that has been done in this field has yet to become extensive. While there is still plenty of time for growth in the research of this field, there are some key issues and biases within the current research that still need to be addressed.

The article “A Review of Urban Ecosystem Services: Six Key Challenges for Future Research'' addresses the issue of geographical bias. According to this article, there is a significant geographical bias, “towards the northern hemisphere”.[4] The article states that case study research is done primarily in the United States and China. It goes on to explain how future research would benefit from a more geographically diverse array of case studies.

“A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation” is an article that gives a comprehensive examination of 217 papers written on Urban Ecosystems to answer the questions of where studies are being done, which types of studies are being done, and to what extent do stakeholders influence these studies.[5] According to this article, "The results indicate that most UES studies have been undertaken in Europe, North America, and China, at city scale. Assessment methods involve bio-physical models, Geographical Information Systems, and valuation, but few study findings have been implemented as land use policy."

Urban vacancy and land use legacies: A frontier for urban ecological research, design, and planning” is another scholarly article that gives an insight into the future of urban ecological research. It details an important opportunity for the future of urban ecological researchers that only a few researchers have inquired into so far, the utilization of vacant land for the creation of urban ecosystems.[6]

Issues and solutions

Issues

Urban ecosystems are complex and dynamic systems that encompass a wide range of living and nonliving components. These components include humans, plants, animals, buildings, transportation systems, and water and energy infrastructure. As the world becomes increasingly urbanized, understanding urban ecosystems and how they function is becoming increasingly important.

Cities are home to more than half of the world's population, and the number of people living in urban areas is expected to continue to grow in the coming decades. This rapid urbanization can have both positive and negative impacts on the environment. On the one hand, cities can provide economic opportunities, access to healthcare and education, and a high quality of life for residents. On the other hand, urbanization can also lead to increased pollution, loss of green spaces, and a decrease in biodiversity, “our planet deserves cities that are the center of innovation and efficiency, where families thrive, and where we can realize the promise of low carbon prosperity” [7]

One of the most pressing issues facing urban ecosystems is the problem of air pollution. In many cities, air pollution levels are well above safe limits, and this can have serious implications for human health. Pollution from vehicles, factories, and power plants can cause respiratory problems, heart disease, and even cancer. In addition to its impact on human health, air pollution can also damage buildings, corrode infrastructure, and harm plant and animal life.

Another major issue facing urban ecosystems is the loss of green spaces. As cities grow, natural areas such as forests, wetlands, and grasslands are often replaced by buildings, roads, and other forms of development. This can have a significant impact on biodiversity, because “urban expansion along with population mobility make the impact of urbanization on ecosystem services” [8] and there are many species that rely on these natural areas for food, shelter, and breeding. In addition, green spaces can help to mitigate the effects of air pollution, reduce the urban heat island effect, and provide important recreational opportunities for residents.

Solutions

Despite these challenges, there are many initiatives underway to improve urban ecosystems and make cities more sustainable. For example, many cities are investing in public transportation systems such as buses and trains, which can reduce the number of cars on the road and improve air quality. Similarly, efforts to promote cycling and walking can help to reduce congestion and promote healthier lifestyles.

Another important strategy for improving urban ecosystems is to increase the amount of green space in cities. This can involve creating new parks and gardens, as well as incorporating green roofs and walls into buildings. Green spaces provide important habitat for wildlife, help to absorb carbon dioxide, and can even help to reduce the amount of energy needed to cool buildings in the summer.

In addition to these initiatives, there are many other strategies that can be used to promote sustainable urban development. For example, cities can encourage the use of renewable energy sources such as solar and wind power, promote water conservation, and implement green building codes to reduce energy use in new construction. Similarly, initiatives to promote sustainable food production and distribution can help to reduce the environmental impact of food production and improve access to healthy, locally grown food.

Bibliography

  • Gibson, R.B., Alexander, D.H.M., & Tomalty, R. (1997). "Putting cities in their place: Ecosystem-based planning for Canadian urban regions". In M. Roseland (ed.). Eco-city dimensions: Healthy communities, healthy planet. Gabriola Island, B.C.: New Society. pp. 25–39. hdl:10613/2758. ISBN 9780865713536.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Manfredi Nicoletti, L'Ecosistema Urbano (The Urban Ecosystem), Dedalo Bari 1978
  • Maes, Mikaël J. A., et al. (2019). Mapping Synergies and Trade-Offs between Urban Ecosystems and the Sustainable Development Goals. Environmental Science & Policy, 93, 181-188.[9]
  • Neuenkamp, Lena, et al. (2021). Special Issue: Urban Ecosystems: Potentials, Challenges, and Solutions. Basic & Applied Ecology, 56, 281-288.[10]
  • Nilon, C. H., Aronson, M. F., Cilliers, S. S., Dobbs, C., Frazee, L. J., Goddard, M. A., & Yocom, K. P. (2017). Planning for the future of urban biodiversity: A global review of city-scale initiatives. BioScience, 67(4), 332-342.[11]
  • Colombo, Enea, et al. “Smartification from Pilot Projects to New Trends in Urban Ecosystems.” 2022 IEEE International Smart Cities Conference (ISC2), Smart Cities Conference (ISC2), 2022 IEEE International, Sept. 2022, pp. 1–7. EBSCOhost.[7]
  • Kourdounouli, Christina, and Anna Maria Jönsson. “Urban Ecosystem Conditions and Ecosystem Services – a Comparison between Large Urban Zones and City Cores in the EU.” Journal of Environmental Planning and Management BECC: Biodiversity and Ecosystem Services in a Changing Climate, vol. 63, no. 5, Jan. 2020, pp. 798–817. EBSCOhost [8]

See also

References

  1. Keith, DA; Corlett, RT (2020). "T7.4 Urban and industrial ecosystems". In Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Kingsford, R.T. (eds.). The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland: IUCN. doi:10.2305/IUCN.CH.2020.13.en. ISBN 978-2-8317-2077-7. S2CID 241360441.
  2. Meirong, Su (2010). "Urban ecosystem health assessment:A review". The Science of the Total Environment. 408 (12): 2425–2434. Bibcode:2010ScTEn.408.2425S. doi:10.1016/j.scitotenv.2010.03.009. PMID 20346483.
  3. Steenberg (2015). "Neighborhood- scale urban forest ecosystem classification". Journal of Environmental Management. 163: 134–145. doi:10.1016/j.jenvman.2015.08.008. PMID 26311086.
  4. Luederitz, Christopher; Brink, Ebba; Gralla, Fabienne; Hermelingmeier, Verena; Meyer, Moritz; Niven, Lisa; Panzer, Lars; Partelow, Stefan; Rau, Anna-Lena; Sasaki, Ryuei; Abson, David J.; Lang, Daniel J.; Wamsler, Christine; von Wehrden, Henrik (2015-08-01). "A review of urban ecosystem services: six key challenges for future research". Ecosystem Services. 14: 98–112. doi:10.1016/j.ecoser.2015.05.001. ISSN 2212-0416.
  5. Haase, Dagmar; Larondelle, Neele; Andersson, Erik; Artmann, Martina; Borgström, Sara; Breuste, Jürgen; Gomez-Baggethun, Erik; Gren, Åsa; Hamstead, Zoé; Hansen, Rieke; Kabisch, Nadja; Kremer, Peleg; Langemeyer, Johannes; Rall, Emily Lorance; McPhearson, Timon (2014-05-01). "A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation". AMBIO. 43 (4): 413–433. doi:10.1007/s13280-014-0504-0. ISSN 1654-7209. PMC 3989520. PMID 24740614.
  6. Haase, Dagmar; Larondelle, Neele; Andersson, Erik; Artmann, Martina; Borgström, Sara; Breuste, Jürgen; Gomez-Baggethun, Erik; Gren, Åsa; Hamstead, Zoé; Hansen, Rieke; Kabisch, Nadja; Kremer, Peleg; Langemeyer, Johannes; Rall, Emily Lorance; McPhearson, Timon (2014-05-01). "A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation". AMBIO. 43 (4): 413–433. doi:10.1007/s13280-014-0504-0. ISSN 1654-7209.
  7. Colombo, Enea; Pal, Sudhanshu; Brunello, Michele (September 2022). "Smartification from Pilot Projects to New Trends in Urban Ecosystems". 2022 IEEE International Smart Cities Conference (ISC2): 1–7. doi:10.1109/ISC255366.2022.9922115.
  8. Kourdounouli, Christina; Jönsson, Anna Maria (2020-04-15). "Urban ecosystem conditions and ecosystem services – a comparison between large urban zones and city cores in the EU". Journal of Environmental Planning and Management. 63 (5): 798–817. doi:10.1080/09640568.2019.1613966. ISSN 0964-0568.
  9. Maes, Mikaël J. A.; Jones, Kate E.; Toledano, Mireille B.; Milligan, Ben (2019-03-01). "Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals". Environmental Science & Policy. 93: 181–188. doi:10.1016/j.envsci.2018.12.010. ISSN 1462-9011.
  10. Neuenkamp, Lena; Fischer, Leonie K.; Schröder, Roland; Klaus, Valentin H. (2021-11-01). "Special issue: Urban ecosystems: potentials, challenges, and solutions". Basic and Applied Ecology. 56: 281–288. doi:10.1016/j.baae.2021.08.010. ISSN 1439-1791.
  11. academic.oup.com. doi:10.1093/biosci/bix012 https://academic.oup.com/crawlprevention/governor?content=%2fbioscience%2farticle-lookup%2fdoi%2f10.1093%2fbiosci%2fbix012. Retrieved 2023-05-17. {{cite web}}: Missing or empty |title= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.