Carbon sink

A carbon sink is anything, natural or otherwise, that accumulates and stores some carbon-containing chemical compound for an indefinite period and thereby removes carbon dioxide (CO2) from the atmosphere.[1] Globally, the two most important carbon sinks are vegetation and the ocean.[2] Soil is an important carbon storage medium. Much of the organic carbon retained in the soil of agricultural areas has been depleted due to intensive farming. "Blue carbon" designates carbon that is fixed via the ocean ecosystems. Mangroves, salt marshes and seagrasses make up a majority of ocean plant life and store large quantities of carbon.

This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, soil and oceans in billions of tons of carbon per year. Yellow numbers are natural fluxes, red are human contributions in billions of tons of carbon per year. White numbers indicate stored carbon.

Many efforts are being made to enhance natural carbon sinks, mainly soils and forests. In addition, a range of artificial sequestration initiatives are underway such as changed building construction materials, carbon capture and storage and geological sequestration.[3][4]

General

Increase in atmospheric carbon dioxide means increase in global temperature. The amount of carbon dioxide varies naturally in a dynamic equilibrium with photosynthesis of land plants. The natural sinks are:

  • Soil is a carbon store and active carbon sink.[5]
  • Photosynthesis by terrestrial plants with grass and trees allows them to serve as carbon sinks during growing seasons.
  • Absorption of carbon dioxide by the oceans via solubility and biological pumps

While the creation of artificial sinks has been discussed, no major artificial systems remove carbon from the atmosphere on a material scale yet.[6]

Carbon sources include the combustion of fossil fuels (coal, natural gas, and oil) by humans for energy and transportation.[7]

Public awareness of the significance of CO2 sinks has grown since passage of the 1997 Kyoto Protocol, which promotes their use as a form of carbon offset.[8] There are also different strategies used to enhance this process.

Types of sinks in the environment

Soils

Soils represent a short to long-term carbon storage medium, and contain more carbon than all terrestrial vegetation and the atmosphere combined.[9][10][11] Plant litter and other biomass including charcoal accumulates as organic matter in soils, and is degraded by chemical weathering and biological degradation. More recalcitrant organic carbon polymers such as cellulose, hemi-cellulose, lignin, aliphatic compounds, waxes and terpenoids are collectively retained as humus.[12] Organic matter tends to accumulate in litter and soils of colder regions such as the boreal forests of North America and the Taiga of Russia. Leaf litter and humus are rapidly oxidized and poorly retained in sub-tropical and tropical climate conditions due to high temperatures and extensive leaching by rainfall. Areas where shifting cultivation or slash and burn agriculture are practiced are generally only fertile for two to three years before they are abandoned. These tropical jungles are similar to coral reefs in that they are highly efficient at conserving and circulating necessary nutrients, which explains their lushness in a nutrient desert.[13] Much organic carbon retained in many agricultural areas worldwide has been severely depleted due to intensive farming practices.[14]

Grasslands contribute to soil organic matter, stored mainly in their extensive fibrous root mats. Due in part to the climatic conditions of these regions (e.g. cooler temperatures and semi-arid to arid conditions), these soils can accumulate significant quantities of organic matter. This can vary based on rainfall, the length of the winter season, and the frequency of naturally occurring lightning-induced grass-fires. While these fires release carbon dioxide, they improve the quality of the grasslands overall, in turn increasing the amount of carbon retained in the humic material. They also deposit carbon directly to the soil in the form of Biochar that does not significantly degrade back to carbon dioxide.[15]

Forest fires release absorbed carbon back into the atmosphere,[16] as does deforestation due to rapidly increased oxidation of soil organic matter.[17]

Organic matter in peat bogs undergoes slow anaerobic decomposition below the surface. This process is slow enough that in many cases the bog grows rapidly and fixes more carbon from the atmosphere than is released. Over time, the peat grows deeper. Peat bogs hold approximately one-quarter of the carbon stored in land plants and soils.[18]

Under some conditions, forests and peat bogs may become sources of CO2, such as when a forest is flooded by the construction of a hydroelectric dam. Unless the forests and peat are harvested before flooding, the rotting vegetation is a source of CO2 and methane comparable in magnitude to the amount of carbon released by a fossil-fuel powered plant of equivalent power.[19]

Regenerative agriculture

Current agricultural practices lead to carbon loss from soils. It has been suggested that improved farming practices could improve the capacity of the soil carbon sponge to hold carbon and water. Present worldwide practises of overgrazing are substantially reducing many grasslands' performance as soil carbon sponges.[20] The Rodale Institute says that regenerative agriculture, if practiced on the planet's tillable land of 15 million km2 (3.6 billion acres), could sequester up to 40% of current CO2 emissions.[21] They claim that agricultural carbon sequestration has the potential to mitigate global warming. When using biologically based regenerative practices, this dramatic benefit can be accomplished with no decrease in yields or farmer profits.[22] Organically managed soils can convert carbon dioxide from a greenhouse gas into a food-producing asset.[14]

In 2006, U.S. carbon dioxide emissions, largely from fossil fuel combustion, were estimated at nearly 5.9 billion tonnes (6.5 billion short tons).[23] If a 220 tonnes per square kilometre (2,000 lb/acre) per year sequestration rate was achieved on all 1.76 million km2 (434 million acres) of cropland in the United States, nearly 1.5 billion t (1.6 billion short tons) of carbon dioxide would be sequestered per year, mitigating close to one quarter of the country's total fossil fuel emissions.[14]

Riverine transport

How carbon moves from inland waters to the ocean
Carbon dioxide exchange, photosynthetic production and respiration of terrestrial vegetation, rock weathering, and sedimentation occur in terrestrial ecosystems. Carbon transports to the ocean through the land-river-estuary continuum in the form of organic carbon and inorganic carbon. Carbon exchange at the air-water interface, transportation, transformation and sedimentation occur in oceanic ecosystems.[24]

Terrestrial and marine ecosystems are chiefly connected through riverine transport, which acts as the main channel through which erosive terrestrially derived substances enter into oceanic systems. Material and energy exchanges between the terrestrial biosphere and the lithosphere as well as organic carbon fixation and oxidation processes together regulate ecosystem carbon and dioxygen (O2) pools.[24]

Riverine transport, being the main connective channel of these pools, will act to transport net primary productivity (primarily in the form of dissolved organic carbon (DOC) and particulate organic carbon (POC)) from terrestrial to oceanic systems.[25] During transport, part of DOC will rapidly return to the atmosphere through redox reactions, causing "carbon degassing" to occur between land-atmosphere storage layers.[26][27] The remaining DOC and dissolved inorganic carbon (DIC) are also exported to the ocean.[28][29][30] Currently (2015) inorganic and organic carbon export fluxes from global rivers to the ocean amount to 0.50–0.70 Pg C y−1 and 0.15–0.35 Pg C y−1 respectively.[29] On the other hand, POC can remain buried in sediment over an extensive period, and the annual global terrestrial to oceanic POC flux has been estimated at 0.20 (+0.13,-0.07) Gg C y−1.[31][24]

Oceans

Global distribution of blue carbon (rooted vegetation in the coastal zone): tidal marshes, mangroves and seagrasses.[32]

Blue carbon is a term used in the climate change mitigation context that refers to "biologically driven carbon fluxes and storage in marine systems that are amenable to management."[33]:2220 Most commonly, it refers to the role that tidal marshes, mangroves and seagrasses can play in carbon sequestration.[33]:2220 Such ecosystems can contribute to climate change mitigation and also to ecosystem-based adaptation. However, when coastal blue carbon ecosystems are degraded or lost they release carbon back to the atmosphere.[33]:2220

Blue carbon management methods can be grouped into ocean-based biological carbon dioxide removal (CDR) methods.[34]:764 They are a type of biologic carbon sequestration.

There is increasing interest in developing blue carbon potential.[35] Research is ongoing. In some cases it has been found that these types of ecosystems remove far more carbon per area than terrestrial forests. However, the long-term effectiveness of blue carbon as a carbon dioxide removal solution remains contested.[36][35][37]

Enhancing natural carbon sinks

Purpose in the context of climate change

About 58% of CO2 emissions have been absorbed by carbon sinks, including plant growth, soil uptake, and ocean uptake (2020 Global Carbon Budget).
World protected area map with total percentage of each country under protection, where countries in lighter colors have more protected land

To reduce pressures on ecosystems and enhance their carbon sequestration capabilities, changes are necessary in agriculture and forestry,[38] such as preventing deforestation and restoring natural ecosystems by reforestation.[39]:266 Scenarios that limit global warming to 1.5 °C typically project the large-scale use of carbon dioxide removal methods over the 21st century.[40]:1068[41]:17 There are concerns though about over-reliance on these technologies, and environmental impacts.[41]:17[42]:34 Nonetheless, the mitigation potential of ecosystem restoration and reduced conversion are among the mitigation tools that can yield the most emissions reductions before 2030.[43]:43

Land-based mitigation options are referred to as "AFOLU mitigation options" in the 2022 IPCC report on mitigation. The abbreviation stands for "agriculture, forestry and other land use"[43]:37 The report described the economic mitigation potential from relevant activities around forests and ecosystems as follows: "the conservation, improved management, and restoration of forests and other ecosystems (coastal wetlands, peatlands, savannas and grasslands)". A high mitigation potential is found for reducing deforestation in tropical regions. The economic potential of these activities has been estimated to be 4.2 to 7.4 Giga tons of CO2 equivalents per year.[43]:37

Soils

Since the 1850s, a large proportion of the world's grasslands have been tilled and converted to croplands, allowing the rapid oxidation of large quantities of soil organic carbon. However, in the United States in 2004 (the most recent year for which EPA statistics are available), agricultural soils including pasture land sequestered 0.8% (46 megatonne)[44] as much carbon as was released in the United States by the combustion of fossil fuels (5,988 megatonne).[45] The annual amount of this sequestration has been gradually increasing since 1998.[46][44]

Methods that significantly enhance carbon sequestration in soil include no-till farming, residue mulching, cover cropping, and crop rotation, all of which are more widely used in organic farming than in conventional farming.[47][48] Because only 5% of US farmland currently uses no-till and residue mulching, there is a large potential for carbon sequestration.[49] Conversion to pastureland, particularly with good management of grazing, can sequester even more carbon in the soil.

Terra preta, an anthropogenic, high-carbon soil, is also being investigated as a sequestration mechanism. By pyrolysing biomass, about half of its carbon can be reduced to charcoal, which can persist in the soil for centuries, and makes a useful soil amendment, especially in tropical soils (biochar or agrichar).[50][51]

"For most of human history, permafrost has been Earth's largest terrestrial carbon sink, trapping plant and animal material in its frozen layers for centuries. It currently stores about 1,600 billion tonnes of carbon—more than twice the amount in the atmosphere today. But thanks to rising temperatures, permafrost is fracturing and disappearing".[52] Sergey Zimov has proposed to restore and protect this major carbon sequestration mechanism via restoration of grassland and large arctic mammalian herbivores.[53]

Forests

Forests can be carbon stores,[54][55][56] and they are carbon dioxide sinks when they are increasing in density or area. In Canada's boreal forests as much as 80% of the total carbon is stored in the soils as dead organic matter.[57] A 40-year study of African, Asian, and South American tropical forests by the University of Leeds showed that tropical forests absorb about 18% of all carbon dioxide added by fossil fuels. For the last three decades, the amount of carbon absorbed by the world's intact tropical forests has fallen, according to a study published in 2020 in the journal Nature.

Proportion of carbon stock in forest carbon pools, 2020[58]

The total carbon stock in forests decreased from 668 gigatonnes in 1990 to 662 gigatonnes in 2020.[59] However, another study finds that the leaf area index has increased globally since 1981, which was responsible for 12.4% of the accumulated terrestrial carbon sink from 1981 to 2016. The CO2 fertilization effect, on the other hand, was responsible for 47% of the sink, while climate change reduced the sink by 28.6%.[60]

In 2019 they took up a third less carbon than they did in the 1990s, due to higher temperatures, droughts and deforestation. The typical tropical forest may become a carbon source by the 2060s.[61] Truly mature tropical forests, by definition, grow rapidly, with each tree producing at least 10 new trees each year. Based on studies by FAO and UNEP, it has been estimated that Asian forests absorb about 5 tonnes of carbon dioxide per hectare each year. The global cooling effect of carbon sequestration by forests is partially counterbalanced in that reforestation can decrease the reflection of sunlight (albedo). Mid-to-high-latitude forests have a much lower albedo during snow seasons than flat ground, thus contributing to warming. Modeling that compares the effects of albedo differences between forests and grasslands suggests that expanding the land area of forests in temperate zones offers only a temporary cooling benefit.[62][63][64][65]

In the United States in 2004 (the most recent year for which EPA statistics[66] are available), forests sequestered 10.6% (637 megatonnes)[44] of the carbon dioxide released in the United States by the combustion of fossil fuels (coal, oil, and natural gas; 5,657 megatonnes[45]). Urban trees sequestered another 1.5% (88 megatonnes).[44] To further reduce U.S. carbon dioxide emissions by 7%, as stipulated by the Kyoto Protocol, would require the planting of "an area the size of Texas [8% of the area of Brazil] every 30 years".[67] Carbon offset programs are planting millions of fast-growing trees per year to reforest tropical lands, for as little as $0.10 per tree; over their typical 40-year lifetime, one million of these trees will fix 1 a million tons of carbon dioxide.[68][69] In Canada, reducing timber harvesting would have very little impact on carbon dioxide emissions because of the combination of harvest and stored carbon in manufactured wood products along with the regrowth of the harvested forests. Additionally, the amount of carbon released from harvesting is small compared to the amount of carbon lost each year to forest fires and other natural disturbances.[57]

The Intergovernmental Panel on Climate Change concluded that "a sustainable forest management strategy aimed at maintaining or increasing forest carbon stocks, while producing an annual sustained yield of timber fibre or energy from the forest, will generate the largest sustained mitigation benefit".[70] Sustainable management practices keep forests growing at a higher rate over a potentially longer period of time, thus providing net sequestration benefits in addition to those of unmanaged forests.[71]

Life expectancy of forests varies throughout the world, influenced by tree species, site conditions and natural disturbance patterns. In some forests, carbon may be stored for centuries, while in other forests, carbon is released with frequent stand replacing fires. Forests that are harvested prior to stand replacing events allow for the retention of carbon in manufactured forest products such as lumber.[72] However, only a portion of the carbon removed from logged forests ends up as durable goods and buildings. The remainder ends up as sawmill by-products such as pulp, paper and pallets, which often end with incineration (resulting in carbon release into the atmosphere) at the end of their lifecycle. For instance, of the 1,692 megatonnes of carbon harvested from forests in Oregon and Washington from 1900 to 1992, only 23% is in long-term storage in forest products.[73]

Oceans

To enhance carbon sequestration processes in oceans the following technologies have been proposed but none have achieved large scale application so far: Seaweed farming, ocean fertilisation, artificial upwelling, basalt storage, mineralization and deep sea sediments, adding bases to neutralize acids. The idea of direct deep-sea carbon dioxide injection has been abandoned.[74]

Cumulative contributions to the global carbon budget since 1850 illustrate how source and sink components have been out of balance, causing a nearly 50% rise in atmospheric carbon dioxide concentration.[75]

One study in 2020 found that 32 tracked Brazilian non-Amazon seasonal tropical forests declined from a carbon sink to a carbon source in 2013 and concludes that "policies are needed to mitigate the emission of greenhouse gases and to restore and protect tropical seasonal forests".[76][77]

The IPCC has noted that oceans and vegetation will progressively absorb a smaller fraction of CO2 emissions and, in return, create a larger absorption shortcoming.[78]

An emerging trend is the use of conservative or regenerative agriculture. According to Project Drawdown, regenerative agriculture could sink 9.43 to 13.4 gigatons of CO2 between 2020 and 2050. This will be a huge contribution to sink performance.[79]


Sources

 This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO (license statement/permission). Text taken from Global Forest Resources Assessment 2020 Key findings, FAO, FAO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.

References

  1. "What is a carbon sink?". www.clientearth.org. Retrieved 18 June 2021.
  2. "Carbon Sources and Sinks". National Geographic Society. 26 March 2020. Archived from the original on 14 December 2020. Retrieved 18 June 2021.
  3. Churkina, Galina; Organschi, Alan; Reyer, Christopher P. O.; Ruff, Andrew; Vinke, Kira; Liu, Zhu; Reck, Barbara K.; Graedel, T. E.; Schellnhuber, Hans Joachim (2020). "Buildings as a global carbon sink". Nature Sustainability. 3 (4): 269–276. doi:10.1038/s41893-019-0462-4. ISSN 2398-9629. S2CID 213032074.
  4. "carbon sequestration | Definition, Methods, & Climate Change". Encyclopedia Britannica. Retrieved 18 June 2021.
  5. Blakemore, R.J. (2018). "Non-Flat Earth Recalibrated for Terrain and Topsoil". Soil Systems. 2 (4): 64. doi:10.3390/soilsystems2040064.
  6. "Carbon Sinks: A Brief Review". Earth.Org - Past | Present | Future. Retrieved 2 December 2020.
  7. Environmental Protection Agency, United States (12 August 2013). "Overview of Greenhouse Gases". EPA Climate Change. US EPA. Retrieved 17 May 2015.
  8. "carbon sink — European Environment Agency". www.eea.europa.eu. Retrieved 18 June 2021.
  9. Swift, Roger S. (November 2001). "Sequestration of Carbon by soil". Soil Science. 166 (11): 858–71. Bibcode:2001SoilS.166..858S. doi:10.1097/00010694-200111000-00010. S2CID 96820247.
  10. Batjes, Niels H. (1996). "Total carbon and nitrogen in the soils of the world". European Journal of Soil Science. 47 (2): 151–63. doi:10.1111/j.1365-2389.1996.tb01386.x.
  11. Batjes (2016). "Harmonised soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks". Geoderma. 269: 61–68. Bibcode:2016Geode.269...61B. doi:10.1016/j.geoderma.2016.01.034.
  12. Klaus Lorenza; Rattan Lala; Caroline M. Prestonb; Klaas G.J. Nieropc (15 November 2007). "Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules". Geoderma. 142 (1–2): 1–10. Bibcode:2007Geode.142....1L. doi:10.1016/j.geoderma.2007.07.013.
  13. "Coral Reefs Biome "Underwater Rainforests"". Retrieved 19 September 2021.
  14. "Organic Farming Can Cool the World that Chemical Farming Overheated". 17 October 2009. Retrieved 18 September 2021.
  15. Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen (10 August 2010). "Sustainable biochar to mitigate global climate change". Nature Communications. 1 (5): 56. Bibcode:2010NatCo...1...56W. doi:10.1038/ncomms1053. ISSN 2041-1723. PMC 2964457. PMID 20975722.
  16. Mooney, Chris. "The really scary thing about wildfires is how they can worsen climate change". The Washington Post. Retrieved 24 January 2017.
  17. "Deforestation & Carbon Emission". Consulting Geologist. Retrieved 24 January 2017.
  18. Chester, Bronwyn (20 April 2000). "The case of the missing sink". McGill Reporter. Retrieved 17 June 2022.
  19. Duncan Graham-Rowe (24 February 2005). "Hydroelectric power's dirty secret revealed". New Scientist. Archived from the original on 18 May 2008. Retrieved 8 July 2008.
  20. C. Michael Hogan (28 December 2009). "Overgrazing". In Cutler J. Cleveland (ed.). Encyclopedia of Earth. Sidney Draggan (Topic Editor). Washington DC: Environmental Information Coalition, National Council for Science and the Environment. Archived from the original on 11 July 2010.
  21. Timothy J. LaSalle; Paul Hepperly (2008). Regenerative 21st Century Farming: A Solution to Global Warming (PDF) (Report). The Rodale Institute. Archived from the original (PDF) on 10 September 2008. Retrieved 19 May 2008.
  22. "The Farming Systems Trial" (PDF). Rodale Institute. Archived from the original (PDF) on 22 February 2013. Retrieved 20 November 2013.
  23. "Carbon Dioxide and Our Ocean Legacy, by Richard A. Feely et. al" (PDF). Archived (PDF) from the original on 1 June 2006.
  24. Gao, Yang; Jia, Junjie; Lu, Yao; Sun, Kun; Wang, Jing; Wang, Shuoyue (2022). "Carbon transportation, transformation, and sedimentation processes at the land-river-estuary continuum". Fundamental Research. Elsevier BV. doi:10.1016/j.fmre.2022.07.007. ISSN 2667-3258. S2CID 251168582. Modified material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  25. Schlünz, B.; Schneider, R. R. (22 March 2000). "Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates". International Journal of Earth Sciences. Springer Science and Business Media LLC. 88 (4): 599–606. Bibcode:2000IJEaS..88..599S. doi:10.1007/s005310050290. ISSN 1437-3254. S2CID 128411658.
  26. Blair, Neal E.; Leithold, Elana L.; Aller, Robert C. (2004). "From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems". Marine Chemistry. 92 (1–4): 141–156. doi:10.1016/j.marchem.2004.06.023.
  27. Bouchez, Julien; Beyssac, Olivier; Galy, Valier; Gaillardet, Jérôme; France-Lanord, Christian; Maurice, Laurence; Moreira-Turcq, Patricia (2010). "Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2". Geology. Geological Society of America. 38 (3): 255–258. Bibcode:2010Geo....38..255B. doi:10.1130/g30608.1. ISSN 1943-2682. S2CID 53512466.
  28. Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; Mackenzie, Fred T.; et al. (9 June 2013). "Anthropogenic perturbation of the carbon fluxes from land to ocean" (PDF). Nature Geoscience. Springer Science and Business Media LLC. 6 (8): 597–607. Bibcode:2013NatGe...6..597R. doi:10.1038/ngeo1830. ISSN 1752-0894. S2CID 53418968.
  29. Bauer, James E.; Cai, Wei-Jun; Raymond, Peter A.; Bianchi, Thomas S.; Hopkinson, Charles S.; Regnier, Pierre A. G. (4 December 2013). "The changing carbon cycle of the coastal ocean". Nature. Springer Science and Business Media LLC. 504 (7478): 61–70. Bibcode:2013Natur.504...61B. doi:10.1038/nature12857. ISSN 0028-0836. PMID 24305149. S2CID 4399374.
  30. Cai, Wei-Jun (15 January 2011). "Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?". Annual Review of Marine Science. Annual Reviews. 3 (1): 123–145. Bibcode:2011ARMS....3..123C. doi:10.1146/annurev-marine-120709-142723. ISSN 1941-1405. PMID 21329201.
  31. Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy (2015). "Global carbon export from the terrestrial biosphere controlled by erosion". Nature. Springer Science and Business Media LLC. 521 (7551): 204–207. Bibcode:2015Natur.521..204G. doi:10.1038/nature14400. ISSN 0028-0836. PMID 25971513. S2CID 205243485.
  32. Pendleton, Linwood; Donato, Daniel C.; Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone (2012). "Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems". PLOS ONE. 7 (9): e43542. Bibcode:2012PLoSO...743542P. doi:10.1371/journal.pone.0043542. PMC 3433453. PMID 22962585.
  33. IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  34. Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld, 2021: Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816, doi: 10.1017/9781009157896.007.
  35. Ricart, Aurora M.; Krause-Jensen, Dorte; Hancke, Kasper; Price, Nichole N.; Masqué, Pere; Duarte, Carlos M. (2022). "Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics". Environmental Research Letters. 17 (8): 081003. Bibcode:2022ERL....17h1003R. doi:10.1088/1748-9326/ac82ff. S2CID 250973225.
  36. Hurd, Catriona L.; Law, Cliff S.; Bach, Lennart T.; Britton, Damon; Hovenden, Mark; Paine, Ellie R.; Raven, John A.; Tamsitt, Veronica; Boyd, Philip W. (2022). "Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration". Journal of Phycology. 58 (3): 347–363. doi:10.1111/jpy.13249. PMID 35286717. S2CID 247453370.
  37. Boyd, Philip W.; Bach, Lennart T.; Hurd, Catriona L.; Paine, Ellie; Raven, John A.; Tamsitt, Veronica (2022). "Potential negative effects of ocean afforestation on offshore ecosystems". Nature Ecology & Evolution. 6 (6): 675–683. doi:10.1038/s41559-022-01722-1. PMID 35449458. S2CID 248322820.
  38. Levin, Kelly (8 August 2019). "How Effective Is Land At Removing Carbon Pollution? The IPCC Weighs In". {{cite journal}}: Cite journal requires |journal= (help)
  39. Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Chapter 3: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312. https://doi.org/10.1017/9781009157940.005.
  40. Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel (2018). "Carbon capture and storage (CCS): the way forward". Energy & Environmental Science. 11 (5): 1062–1176. doi:10.1039/C7EE02342A. ISSN 1754-5692.
  41. IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001.
  42. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.
  43. IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  44. "Land Use, Land-Use Change, and Forestry" (PDF). EPA. Archived from the original (PDF) on 23 May 2008. Retrieved 8 July 2008.
  45. "Executive Summary" (PDF). EPA. Archived from the original (PDF) on 18 July 2008. Retrieved 8 July 2008.
  46. "Visualizing Carbon Storage in Earth's Ecosystems". 25 January 2022. Retrieved 31 January 2022.
  47. Susan S. Lang (13 July 2005). "Organic farming produces same corn and soybean yields as conventional farms, but consumes less energy and no pesticides, study finds". Retrieved 8 July 2008.
  48. Pimentel, David; Hepperly, Paul; Hanson, James; Douds, David; Seidel, Rita (2005). "Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems". BioScience. 55 (7): 573–82. doi:10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2.
  49. Lal, Rattan; Griffin, Michael; Apt, Jay; Lave, Lester; Morgan, M. Granger (2004). "Ecology: Managing Soil Carbon". Science. 304 (5669): 393. doi:10.1126/science.1093079. PMID 15087532. S2CID 129925989.
  50. Johannes Lehmann. "Biochar: the new frontier". Archived from the original on 18 June 2008. Retrieved 8 July 2008.
  51. Horstman, Mark (23 September 2007). "Agrichar – A solution to global warming?". ABC TV Science: Catalyst. Australian Broadcasting Corporation. Retrieved 8 July 2008.
  52. Monique Brouillette (17 March 2021). "How microbes in permafrost could trigger a massive carbon bomb". Nature. 591 (7850): 360–362. Bibcode:2021Natur.591..360B. doi:10.1038/d41586-021-00659-y. PMID 33731951. S2CID 232297719.
  53. "One Russian scientist hopes to slow the thawing of the Arctic". The Economist. 16 December 2020.
  54. Carolyn Gramling (28 September 2017). "Tropical forests have flipped from sponges to sources of carbon dioxide; A closer look at the world's trees reveals a loss of density in the tropics". Sciencenews.org. 358 (6360): 230–234. Bibcode:2017Sci...358..230B. doi:10.1126/science.aam5962. PMID 28971966. Retrieved 6 October 2017.
  55. Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA (13 October 2017). "Tropical forests are a net carbon source based on aboveground measurements of gain and loss". Science. 358 (6360): 230–234. Bibcode:2017Sci...358..230B. doi:10.1126/science.aam5962. PMID 28971966.
  56. Spawn, Seth A.; Sullivan, Clare C.; Lark, Tyler J.; Gibbs, Holly K. (December 2020). "Harmonized global maps of above and belowground biomass carbon density in the year 2010". Scientific Data. 7 (1): 112. Bibcode:2020NatSD...7..112S. doi:10.1038/s41597-020-0444-4. PMC 7136222. PMID 32249772.
  57. "Does harvesting in Canada's forests contribute to climate change?" (PDF). Canadian Forest Service Science-Policy Notes. Natural Resources Canada. May 2007. Archived (PDF) from the original on 30 July 2013.
  58. Global Forest Resources Assessment 2020 – Key findings. Rome: FAO. 2020. doi:10.4060/ca8753en. ISBN 978-92-5-132581-0. S2CID 130116768.
  59. Global Forest Resources Assessment 2020 – Key findings. FAO. 2020. doi:10.4060/ca8753en. ISBN 978-92-5-132581-0. S2CID 130116768.
  60. Chen, JM; Ciais, Philippe (18 September 2019). "Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink". Nature Communications. 10 (4259): 4259. Bibcode:2019NatCo..10.4259C. doi:10.1038/s41467-019-12257-8. PMC 6751163. PMID 31534135.
  61. Harvey, Fiona (4 March 2020). "Tropical forests losing their ability to absorb carbon, study finds". The Guardian. ISSN 0261-3077. Retrieved 5 March 2020.
  62. Jonathan Amos (15 December 2006). "Care needed with carbon offsets". BBC. Retrieved 8 July 2008.
  63. "Models show growing more forests in temperate regions could contribute to global warming". Lawrence Livermore National Laboratory. 5 December 2005. Archived from the original on 27 May 2010. Retrieved 8 July 2008.
  64. S. Gibbard; K. Caldeira; G. Bala; T. J. Phillips; M. Wickett (December 2005). "Climate effects of global land cover change". Geophysical Research Letters. 32 (23): L23705. Bibcode:2005GeoRL..3223705G. doi:10.1029/2005GL024550.
  65. Malhi, Yadvinder; Meir, Patrick; Brown, Sandra (2002). "Forests, carbon and global climate". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 360 (1797): 1567–91. Bibcode:2002RSPTA.360.1567M. doi:10.1098/rsta.2002.1020. PMID 12460485. S2CID 1864078.
  66. "U.S. Greenhouse Gas Inventory Reports". EPA. Archived from the original on 1 June 2010. Retrieved 8 July 2008.
  67. William H. Schlesinger, dean of the Nicholas School of the Environment and Earth Sciences at Duke University, in Durham, North Carolina.
  68. "This Is The Impact Of 1 Million Trees". 26 November 2019. Retrieved 18 September 2021.
  69. Grant M. Domke; Sonja N. Oswalt; Brian F. Walters; Randall S. Morin (6 October 2020). "Tree planting has the potential to increase carbon sequestration capacity of forests in the United States" (PDF). PNAS. 117 (40): 24649–24651. Bibcode:2020PNAS..11724649D. doi:10.1073/pnas.2010840117. PMC 7547226. PMID 32958649. S2CID 221842058. Archived (PDF) from the original on 20 October 2020.
  70. "Fourth Assessment Report (AR4): Mitigation of Climate Change (Working Group III)" (PDF). International Panel on Climate Change. p. 549. Archived from the original (PDF) on 4 August 2009. Retrieved 11 August 2009.
  71. Ruddell, Steven; et al. (September 2007). "The Role for Sustainably Managed Forests in Climate Change Mitigation". Journal of Forestry. 105 (6): 314–319.
  72. J. Chatellier (January 2010). The Role of Forest Products in the Global Carbon Cycle: From In-Use to End-of-Life (PDF). Yale School of Forestry and Environmental Studies. Archived from the original (PDF) on 5 July 2010.
  73. Harmon, M. E.; Harmon, J. M.; Ferrell, W. K.; Brooks, D. (1996). "Modeling carbon stores in Oregon and Washington forest products: 1900?1992". Climatic Change. 33 (4): 521. Bibcode:1996ClCh...33..521H. doi:10.1007/BF00141703. S2CID 27637103.
  74. Benson, S.M.; Surles, T. (1 October 2006). "Carbon Dioxide Capture and Storage: An Overview With Emphasis on Capture and Storage in Deep Geological Formations". Proceedings of the IEEE. 94 (10): 1795–1805. doi:10.1109/JPROC.2006.883718. ISSN 0018-9219. S2CID 27994746. Archived from the original on 11 June 2020. Retrieved 10 September 2019.
  75. "Global Carbon Budget 2021" (PDF). Global Carbon Project. 4 November 2021. p. 57. Archived (PDF) from the original on 11 December 2021. The cumulative contributions to the global carbon budget from 1850. The carbon imbalance represents the gap in our current understanding of sources & sinks. ... Source: Friedlingstein et al 2021; Global Carbon Project 2021
  76. "Brazilian forests found to be transitioning from carbon sinks to carbon sources". phys.org. Retrieved 16 January 2021.
  77. Maia, Vinícius Andrade; Santos, Alisson Borges Miranda; Aguiar-Campos, Natália de; Souza, Cléber Rodrigo de; Oliveira, Matheus Coutinho Freitas de; Coelho, Polyanne Aparecida; Morel, Jean Daniel; Costa, Lauana Silva da; Farrapo, Camila Laís; Fagundes, Nathalle Cristine Alencar; Paula, Gabriela Gomes Pires de; Santos, Paola Ferreira; Gianasi, Fernanda Moreira; Silva, Wilder Bento da; Oliveira, Fernanda de; Girardelli, Diego Teixeira; Araújo, Felipe de Carvalho; Vilela, Taynara Andrade; Pereira, Rafaella Tavares; Silva, Lidiany Carolina Arantes da; Menino, Gisele Cristina de Oliveira; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Santos, Rubens Manoel dos (1 December 2020). "The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat". Science Advances. 6 (51): eabd4548. Bibcode:2020SciA....6.4548M. doi:10.1126/sciadv.abd4548. ISSN 2375-2548. PMID 33355136.
  78. Kirn, Marda (2016). Climate Literacy: From the "What" of Climate Change to the "So What" of Personal and Social Change. Geological Society of America Annual Meeting in Denver, Colorado, USA (Abstract). Geological Society of America. doi:10.1130/abs/2016am-287348.
  79. Schleien, Danny (24 September 2020). "We Need To Harness Natural Carbon Sinks To Reverse Climate Change". Climate Conscious. Retrieved 11 November 2021.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.