Allan–Robinson reaction

The Allan–Robinson reaction is the chemical reaction of o-hydroxyaryl ketones with aromatic anhydrides to form flavones (or isoflavones).[1][2][3][4]

If aliphatic anhydrides are used, coumarins can also be formed. (See Kostanecki acylation.)

Reaction overview

Mechanism

The o-hydroxyaryl ketone first undergoes tautomerization to form the respective enol. The pi electrons of the double bond then attack the electrophilic carbon of the anhydride; a carboxylate anion is subsequently lost as a leaving group. The carboxylate anion then attacks an alpha hydrogen to form an enol. The nucleophilic hydroxyl group then attacks the carbonyl carbon to form a six-membered heterocyclic ring. A proton is abstracted from the hydroxyl group of the enol to form a ketone, and the remaining hydroxyl group is lost as a leaving group in a concerted step to afford the final product.[4][5]

See also

References

  1. Allan, J.; Robinson, R. J. Chem. Soc. 1924, 125, 2192.
  2. Dyke, S. F.; Ollis, W. D.; Sainsbury, M. J. Org. Chem. 1961, 26, 2453. (doi:10.1021/jo01351a072)
  3. Wheller, T. S. (1952). "Flavone". Organic Syntheses. 32: 72. doi:10.15227/orgsyn.032.0072.
  4. Jie Jack Li (2009). Name Reactions. A Collection of Detailed Reaction Mechanisms 4th Edition. Berlin, De: Springer. ISBN 978-3-642-01052-1.
  5. Graham, Solomons, T. W. (17 January 2013). Organic chemistry. Fryhle, Craig B.,, Snyder, S. A. (Scott A.) (11e ed.). Hoboken, NJ. ISBN 9781118147399. OCLC 820665397.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.