HD 21749
HD 21749 is an orange main-sequence star in the constellation Reticulum. It has an apparent visual magnitude of 8.143,[2] which means it is too dim to be seen with the naked eye. From parallax measurements by the Gaia spacecraft, it is located about 53 ly (16 pc) from Earth.[1]
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Reticulum |
Right ascension | 03h 26m 59.22s[1] |
Declination | −63° 29′ 56.9″[1] |
Apparent magnitude (V) | 8.143[2] |
Characteristics | |
Spectral type | K4.5V[3] |
U−B color index | 1.144[2] |
B−V color index | 1.159[2] |
Astrometry | |
Radial velocity (Rv) | 59.32±0.12[1] km/s |
Proper motion (μ) | RA: 355.20[1] mas/yr Dec.: -247.39[1] mas/yr |
Parallax (π) | 61.2271 ± 0.0150 mas[1] |
Distance | 53.27 ± 0.01 ly (16.333 ± 0.004 pc) |
Details[4] | |
Mass | 0.73±0.07 M☉ |
Radius | 0.695±0.030 R☉ |
Luminosity | 0.20597±0.00016 L☉ |
Surface gravity (log g) | 4.613+0.052 −0.061 cgs |
Temperature | 4640±100 K |
Metallicity [Fe/H] | 0.003±0.060 dex |
Rotation | 34.1+2.4 −2.7 d[5] |
Rotational velocity (v sin i) | 1.04 km/s |
Age | 3.8±3.7 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Extrasolar Planets Encyclopaedia | 21749 data |
In 2019, it was discovered that the star has two exoplanets: a possibly rocky, hot sub-Neptune-sized exoplanet named HD 21749b; and an Earth-sized exoplanet named HD 21749 c. These exoplanets were discovered by the TESS spacecraft.
Stellar characteristics
HD 21749 is a K-type main sequence star (orange dwarf) with a spectral type of K4.5V,[3] indicating it is smaller and cooler than the Sun. It is estimated to have a mass of 0.73 M☉, a radius of 0.70 R☉, and a luminosity of 0.20 L☉. Its effective temperature is 4,640 K, which gives the star an orange color typical of K-type stars. Its metallicity—the proportion of elements other than hydrogen and helium—is approximately equal to the Sun's.[4]
This star is moderately active, as shown by its spectral activity indicators and photometric data. These measurements indicate a rotation period of around 30 to 40 days, with a most likely value of 34 days. Stellar activity also creates radial velocity variations, which complicates the measurement of the mass of the planets in the system.[5]
Planetary system
In January 2019, the discovery of an exoplanet around HD 21749 was published. The planet was identified from a single transit event detected by the TESS spacecraft, using data from the first two observation sectors of the mission. Since a single transit is insufficient to determine the orbit of a planet, astronomers used archival radial velocity data from the HARPS spectrograph to detect the planet's signal, which allowed the determination of its orbital period and mass.[6] In April 2019, with two additional months of data from the TESS spacecraft, the orbital period of the planet was confirmed with the observation of new transits, and a second planet was discovered.[4]
The inner planet, HD 21749 c (the second in order of discovery), is orbiting the star at a distance of 0.08 AU with a period of just 7.8 days. A terrestrial planet, it has a radius of 1.1 R🜨 and was the first Earth-sized planet found by TESS.[5][4] Its mass is too low to be calculated with current radial velocity data, with an upper limit of 3.5 M🜨; a probabilistic model estimates it is most likely between 1 and 2 M🜨.[5]
The outer planet, HD 21749 b, orbits the star at a distance of 0.21 AU with a period of 35.6 days. With a mass of 20 M🜨 and a radius of 2.9 R🜨, it is similar to Neptune but much denser. Its density of 4.7 g/cm³ suggests it is composed of a substantial rocky core, with a radius of approximately 2.1 R🜨, plus a relatively thick gaseous layer.[5]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
c | <3.5 M🜨 | 0.076±0.008 | 7.7902+0.0004 −0.0006 |
0 | 89.44+0.36 −0.52° |
1.13+0.11 −0.10 R🜨 |
b | 20.0±2.7 M🜨 | 0.209+0.022 −0.021 |
35.6133+0.0005 −0.0006 |
0.164+0.062 −0.058 |
89.40+0.07 −0.08° |
2.86+0.21 −0.20 R🜨 |
References
- Vallenari, A.; et al. (Gaia Collaboration) (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. arXiv:2208.00211. doi:10.1051/0004-6361/202243940. Gaia DR3 record for this source at VizieR.
- "HD 21749". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 8 January 2018.
- Gray, R. O.; et al. (July 2006). "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample". The Astronomical Journal. 132 (1): 161–170. arXiv:astro-ph/0603770. Bibcode:2006AJ....132..161G. doi:10.1086/504637. S2CID 119476992.
- Dragomir, Diana; et al. (2019), "TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune", The Astrophysical Journal, 875 (2): L7, arXiv:1901.00051, Bibcode:2019ApJ...875L...7D, doi:10.3847/2041-8213/ab12ed, S2CID 129945503
- Gan, Tianjun; Wang, Sharon Xuesong; Teske, Johanna K.; Mao, Shude; Howard, Ward S.; Law, Nicholas M.; Batalha, Natasha E.; Vanderburg, Andrew; Dragomir, Diana; Huang, Chelsea X.; Feng, Fabo; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Beletsky, Yuri; Shporer, Avi; Montet, Benjamin T.; Burt, Jennifer A.; Feinstein, Adina D.; Flowers, Erin; Nandakumar, Sangeetha; Barbieri, Mauro; Corbett, Hank; Ratzloff, Jeffrey K.; Galliher, Nathan; Chavez, Ramses Gonzalez; Vasquez, Alan; Glazier, Amy; Haislip, Joshua (2021), "Revisiting the HD 21749 planetary system with stellar activity modelling", Monthly Notices of the Royal Astronomical Society, 501 (4): 6042, arXiv:2012.04873, Bibcode:2021MNRAS.501.6042G, doi:10.1093/mnras/staa3886
- Trifonov, Trifon; Rybizki, Jan; Kürster, Martin (2019), "TESS exoplanet candidates validated with HARPS archival data. A massive Neptune around GJ 143 and two Neptunes around HD 23472", Astronomy and Astrophysics, 622: 622, arXiv:1812.04501, Bibcode:2019A&A...622L...7T, doi:10.1051/0004-6361/201834817, S2CID 119347462
External links
- Staff (2019). "Stellar Overview Page - HD 21749". NASA Exoplanet Archive. Retrieved 8 January 2019.
- Overbye, Dennis (7 January 2019). "Another Day, Another Exoplanet: NASA's TESS Keeps Counting More". The New York Times. Retrieved 8 January 2019.
- Massachusetts Institute of Technology (16 April 2019). "TESS discovers its first Earth-sized planet - Orbiting a nearby star, the new planet is the smallest identified so far by the TESS mission". EurekAlert!. Retrieved 16 April 2019.