Infinite-order apeirogonal tiling
In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
| Infinite-order apeirogonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | ∞∞ | 
| Schläfli symbol | {∞,∞} | 
| Wythoff symbol | ∞ | ∞ 2 ∞ ∞ | ∞ | 
| Coxeter diagram |          | 
| Symmetry group | [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞) | 
| Dual | self-dual | 
| Properties | Vertex-transitive, edge-transitive, face-transitive | 
Symmetry
    
This tiling represents the fundamental domains of *∞∞ symmetry.
Uniform colorings
    
This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.
| Domains | 0 | 1 | 2 | 
|---|---|---|---|
|  symmetry: [(∞,∞,∞)]     |  t0{(∞,∞,∞)}     |  t1{(∞,∞,∞)}     |  t2{(∞,∞,∞)}     | 
Related polyhedra and tiling
    
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.
 
- a{∞,∞} or      = =    ∪ ∪    
| Paracompact uniform tilings in [∞,∞] family | ||||||
|---|---|---|---|---|---|---|
|      =      =     |      =      =     |      =      =     |      =      =     |      =      =     |      =      |      =      | 
|  |  |  |  |  |  |  | 
| {∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} | 
| Dual tilings | ||||||
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  | 
| V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ | 
| Alternations | ||||||
| [1+,∞,∞] (*∞∞2) | [∞+,∞] (∞*∞) | [∞,1+,∞] (*∞∞∞∞) | [∞,∞+] (∞*∞) | [∞,∞,1+] (*∞∞2) | [(∞,∞,2+)] (2*∞∞) | [∞,∞]+ (2∞∞) | 
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  | |
| h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} | 
| Alternation duals | ||||||
|      |      |      |      |      |      |      | 
|  |  |  |  | |||
| V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ | 
| Paracompact uniform tilings in [(∞,∞,∞)] family | ||||||
|---|---|---|---|---|---|---|
|     |     |     |     |     |     |     | 
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  | 
| (∞,∞,∞) h{∞,∞} | r(∞,∞,∞) h2{∞,∞} | (∞,∞,∞) h{∞,∞} | r(∞,∞,∞) h2{∞,∞} | (∞,∞,∞) h{∞,∞} | r(∞,∞,∞) r{∞,∞} | t(∞,∞,∞) t{∞,∞} | 
| Dual tilings | ||||||
|  |  |  |  |  |  |  | 
| V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞.∞.∞ | 
| Alternations | ||||||
| [(1+,∞,∞,∞)] (*∞∞∞∞) | [∞+,∞,∞)] (∞*∞) | [∞,1+,∞,∞)] (*∞∞∞∞) | [∞,∞+,∞)] (∞*∞) | [(∞,∞,∞,1+)] (*∞∞∞∞) | [(∞,∞,∞+)] (∞*∞) | [∞,∞,∞)]+ (∞∞∞) | 
|     |     |     |     |     |     |     | 
|  |  |  |  |  |  |  | 
| Alternation duals | ||||||
|  |  |  |  |  |  | |
| V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V3.∞.3.∞.3.∞ | 
See also
    

Wikimedia Commons has media related to Infinite-order apeirogonal tiling.
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.

