Truncated order-6 square tiling
In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.
| Truncated order-6 square tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 8.8.6 | 
| Schläfli symbol | t{4,6} | 
| Wythoff symbol | 2 6 | 4 | 
| Coxeter diagram |      | 
| Symmetry group | [6,4], (*642) [(3,3,4)], (*334) | 
| Dual | Order-4 hexakis hexagonal tiling | 
| Properties | Vertex-transitive | 
Uniform colorings
    
|  The half symmetry [1+,6,4] = [(4,4,3)] can be shown with alternating two colors of octagons, with as Coxeter diagram    . | 
Symmetry
    

The dual tiling represents the fundamental domains of the *443 orbifold symmetry. There are two reflective subgroup kaleidoscopic constructed from [(4,4,3)] by removing one or two of three mirrors. In these images fundamental domains are alternately colored black and cyan, and mirrors exist on the boundaries between colors.
A larger subgroup is constructed [(4,4,3*)], index 6, as (3*22) with gyration points removed, becomes (*222222).
The symmetry can be doubled as 642 symmetry by adding a mirror bisecting the fundamental domain.
| Small index subgroups of [(4,4,3)] (*443) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | 1 | 2 | 6 | ||||||||
| Diagram |  |  |  |  | |||||||
| Coxeter (orbifold) | [(4,4,3)] =    (*443) | [(4,1+,4,3)] =     =    (*3232) | [(4,4,3+)] =    (3*22) | [(4,4,3*)] =     (*222222) | |||||||
| Direct subgroups | |||||||||||
| Index | 2 | 4 | 12 | ||||||||
| Diagram |  |  |  | ||||||||
| Coxeter (orbifold) | [(4,4,3)]+ =    (443) | [(4,4,3+)]+ =     =    (3232) | [(4,4,3*)]+ =     (222222) | ||||||||
Related polyhedra and tilings
    
From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
| Uniform tetrahexagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
|      =     =    =    |      =    |      =    =     =    |       =    |       =    =    =      |        =    |      | |||||
|  |  |  |  |  |  |  | |||||
| {6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      | |||||
|  |  |  |  |  |  |  | |||||
| V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
| Alternations | |||||||||||
| [1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
|      =    |      =     |      =    |      =    |      =    |      =     |      | |||||
|  |  |  |  |  |  |  | |||||
| h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} | |||||
It can also be generated from the (4 4 3) hyperbolic tilings:
| Uniform (4,4,3) tilings | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) | [(4,4,3+)] (3*22) | [(4,1+,4,3)] (*3232) | |||||||
|    |    |    |    |    |    |    |    |    |    |    | 
|      |      |      |      |      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  |  |  |  |  | 
| h{6,4} t0(4,4,3) | h2{6,4} t0,1(4,4,3) | {4,6}1/2 t1(4,4,3) | h2{6,4} t1,2(4,4,3) | h{6,4} t2(4,4,3) | r{6,4}1/2 t0,2(4,4,3) | t{4,6}1/2 t0,1,2(4,4,3) | s{4,6}1/2 s(4,4,3) | hr{4,6}1/2 hr(4,3,4) | h{4,6}1/2 h(4,3,4) | q{4,6} h1(4,3,4) | 
| Uniform duals | ||||||||||
|  |  |  |  | |||||||
| V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 | 
| *n42 symmetry mutation of truncated tilings: n.8.8 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *n42 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
| *242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | ||||
| Truncated figures |  |  |  |  |  |  |  |  | |||
| Config. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
| n-kis figures |  |  |  |  |  |  |  |  | |||
| Config. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 | |||
| *n32 symmetry mutation of omnitruncated tilings: 6.8.2n | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sym. *n43 [(n,4,3)] | Spherical | Compact hyperbolic | Paraco. | |||||||||
| *243 [4,3] | *343 [(3,4,3)] | *443 [(4,4,3)] | *543 [(5,4,3)] | *643 [(6,4,3)] | *743 [(7,4,3)] | *843 [(8,4,3)] | *∞43 [(∞,4,3)] | |||||
| Figures |  |  |  |  |  |  |  |  | ||||
| Config. | 4.8.6 | 6.8.6 | 8.8.6 | 10.8.6 | 12.8.6 | 14.8.6 | 16.8.6 | ∞.8.6 | ||||
| Duals |  |  |  |  |  |  |  |  | ||||
| Config. | V4.8.6 | V6.8.6 | V8.8.6 | V10.8.6 | V12.8.6 | V14.8.6 | V16.8.6 | V6.8.∞ | ||||
See also
    

References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

