Lah number
In mathematics, the Lah numbers, discovered by Ivo Lah in 1954,[1][2] are coefficients expressing rising factorials in terms of falling factorials. They are also the coefficients of the th derivatives of .[3]

Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets.[4] Lah numbers are related to Stirling numbers.[5]
Unsigned Lah numbers (sequence A105278 in the OEIS):
Signed Lah numbers (sequence A008297 in the OEIS):
L(n, 1) is always n!; in the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways:
- {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)}
L(3, 2) corresponds to the 6 partitions with two ordered parts:
- {(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)}
L(n, n) is always 1 since, e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1.
- {(1), (2), (3)}
Adapting the Karamata–Knuth notation for Stirling numbers, it has been proposed to use the following alternative notation for Lah numbers:
Table of values
Below is a table of values for the Lah numbers:
k n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | |||||||||||
2 | 2 | 1 | ||||||||||
3 | 6 | 6 | 1 | |||||||||
4 | 24 | 36 | 12 | 1 | ||||||||
5 | 120 | 240 | 120 | 20 | 1 | |||||||
6 | 720 | 1800 | 1200 | 300 | 30 | 1 | ||||||
7 | 5040 | 15120 | 12600 | 4200 | 630 | 42 | 1 | |||||
8 | 40320 | 141120 | 141120 | 58800 | 11760 | 1176 | 56 | 1 | ||||
9 | 362880 | 1451520 | 1693440 | 846720 | 211680 | 28224 | 2016 | 72 | 1 | |||
10 | 3628800 | 16329600 | 21772800 | 12700800 | 3810240 | 635040 | 60480 | 3240 | 90 | 1 | ||
11 | 39916800 | 199584000 | 299376000 | 199584000 | 69854400 | 13970880 | 1663200 | 11880 | 4950 | 110 | 1 | |
12 | 479001600 | 2634508800 | 4390848000 | 3293136000 | 1317254400 | 307359360 | 43908480 | 3920400 | 217800 | 7260 | 132 | 1 |
Rising and falling factorials
Let represent the rising factorial and let represent the falling factorial .
Then and
For example,
and
Compare the third row of the table of values.
Identities and relations
- where are the Stirling numbers of the first kind and are the Stirling numbers of the second kind, , and for all .
- , for .
So we have
- where , for all
Exponential generating function
Ordinary generating function
Practical application
In recent years, Lah numbers have been used in steganography for hiding data in images. Compared to alternatives such as DCT, DFT and DWT, it has lower complexity——of calculation of their integer coefficients.[6][7] The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion[8] [9] . In Lah-Laguerre optics, such an approach tremendously speeds up optimization problems.
See also
References
- Lah, Ivo (1954). "A new kind of numbers and its application in the actuarial mathematics". Boletim do Instituto dos Actuários Portugueses. 9: 7–15.
- John Riordan, Introduction to Combinatorial Analysis, Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002 by Dover Publications).
- Daboul, Siad; Mangaldan, Jan; Spivey, Michael Z.; Taylor, Peter J. (2013). "The Lah Numbers and the nth Derivative of ". Mathematics Magazine. 86 (1): 39–47. doi:10.4169/math.mag.86.1.039. JSTOR 10.4169/math.mag.86.1.039. S2CID 123113404.
- Petkovsek, Marko; Pisanski, Tomaz (Fall 2007). "Combinatorial Interpretation of Unsigned Stirling and Lah Numbers". Pi Mu Epsilon Journal. 12 (7): 417–424. JSTOR 24340704.
- Comtet, Louis (1974). Advanced Combinatorics. Dordrecht, Holland: Reidel. p. 156. ISBN 9789027703804.
- Ghosal, Sudipta Kr; Mukhopadhyay, Souradeep; Hossain, Sabbir; Sarkar, Ram (2020). "Application of Lah Transform for Security and Privacy of Data through Information Hiding in Telecommunication". Transactions on Emerging Telecommunications Technologies. 32 (2). doi:10.1002/ett.3984. S2CID 225866797.
- "Image Steganography-using-Lah-Transform". MathWorks.
- Popmintchev, Dimitar; Wang, Siyang; Xiaoshi, Zhang; Stoev, Ventzislav; Popmintchev, Tenio (2022-10-24). "Analytical Lah-Laguerre optical formalism for perturbative chromatic dispersion". Optics Express. 30 (22): 40779–40808. Bibcode:2022OExpr..3040779P. doi:10.1364/OE.457139. PMID 36299007.
- Popmintchev, Dimitar; Wang, Siyang; Xiaoshi, Zhang; Stoev, Ventzislav; Popmintchev, Tenio (2020-08-30). "Theory of the Chromatic Dispersion, Revisited". arXiv:2011.00066 [physics.optics].