List of gravitational wave observations
This page contains a list of observed/candidate gravitational wave events.

Origin and nomenclature
Direct observation of gravitational waves, which commenced with the detection of an event by LIGO in 2015,[1] plays a key role in gravitational wave astronomy. LIGO has been involved in all subsequent detections to date, with Virgo joining in August 2017.[2]
Joint observation runs of LIGO and VIRGO, designated "O1, O2, etc." span many months, with months of maintenance and upgrades in-between designed to increase the instruments sensitivity and range. Within these run periods, the instruments are capable of detecting gravitational waves.
The first run, O1, ran from September 12, 2015, to January 19, 2016, and succeeded in its first gravitational wave detection. O2 ran for a greater duration, from November 30, 2016, to August 25, 2017.[3] O3 began on April 1, 2019, which was briefly suspended on September 30, 2019, for maintenance and upgrades, thus O3a. O3b marks resuming of the run and began on November 1, 2019. Due to the COVID-19 pandemic[4] O3 was forced to end prematurely.[5] O4 is planned to begin on May 24, 2023; initially planned for March, the project needed more time to stabilize the instruments.
The O4 observing run has been extended from one year to 18 months, following plans to make further upgrades for the O5 run.[6][7] Updated observing plans are published on the official website, containing the latest information on these runs.[7]
Gravitational wave events are named starting with the prefix GW, while observations that trigger an event alert but have not (yet) been confirmed are named starting with the prefix S.[8] Six digits then indicate the final two digits of the year the event was observed, two digits for the month and two digits for the day of observation. This is similar to the systematic naming for other kinds of astronomical event observations, such as those of gamma-ray bursts.
Probable detections that are not confidently identified as gravitational wave events are designated LVT ("LIGO-Virgo trigger"). Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star (BHNS).[9][10] Some objects are in the mass gap between the largest predicted neutron star masses (Tolman–Oppenheimer–Volkoff limit) and the smallest known black holes.
List of gravitational wave events


GW event and time (UTC)[n 1] |
Date published |
Location area[n 2] (deg2) |
Luminosity distance (Mpc)[n 3] |
Energy radiated/c2 (M☉) [n 4] |
Chirp mass (M☉) [n 5] |
Effective spin[n 6] | Primary | Secondary | Remnant | Notes | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Mass (M☉) | Type | Mass (M☉) | Type | Mass (M☉) | Spin[n 7] | |||||||||
GW150914 09:50:45 |
2016-02-11 | 179; mostly to the south |
430+150 −170 |
3.1+0.4 −0.4 |
28.6+1.6 −1.5 |
−0.01+0.12 −0.13 |
BH [n 8] |
35.6+4.8 −3.0 |
BH [n 9] |
30.6+3.0 −4.4 |
BH |
63.1+3.3 −3.0 |
0.69+0.05 −0.04 |
First GW detection; first BH merger observed |
[18][19][17] |
GW151012 09:54:43 |
2016-06-15 | 1555 |
1060+540 −480 |
1.5+0.5 −0.5 |
15.2+2.0 −1.1 |
0.04+0.28 −0.19 |
BH |
23.3+14.0 −5.5 |
BH |
13.6+4.1 −4.8 |
BH |
35.7+9.9 −3.8 |
0.67+0.13 −0.11 |
Formerly candidate LVT151012; accepted as astrophysical since February 2019 |
[20][12][11] |
GW151226 03:38:53 |
2016-06-15 | 1033 |
440+180 −190 |
1.0+0.1 −0.2 |
8.9+0.3 −0.3 |
0.18+0.20 −0.12 |
BH |
13.7+8.8 −3.2 |
BH |
7.7+2.2 −2.6 |
BH |
20.5+6.4 −1.5 |
0.74+0.07 −0.05 |
[21][22] | |
GW170104 10:11:58 |
2017-06-01 | 924 |
960+430 −410 |
2.2+0.5 −0.5 |
21.5+2.1 −1.7 |
−0.04+0.17 −0.20 |
BH |
31.0+7.2 −5.6 |
BH |
20.1+4.9 −4.5 |
BH |
49.1+5.2 −3.5 |
0.66+0.08 −0.10 |
[13][23] | |
GW170608 02:01:16 |
2017-11-16 | 396; to the north |
320+120 −110 |
0.9+0.0 −0.1 |
7.9+0.2 −0.2 |
0.03+0.19 −0.07 |
BH |
10.9+5.3 −1.7 |
BH |
7.6+1.3 −2.1 |
BH |
17.8+3.2 −0.7 |
0.69+0.04 −0.04 |
Smallest BH progenitor masses to date |
[24] |
GW170729 18:56:29 |
2018-11-30 | 1033 |
2750+1350 −1320 |
4.8+1.7 −1.7 |
35.7+6.5 −4.7 |
0.36+0.21 −0.25 |
BH |
50.6+16.6 −10.2 |
BH |
34.3+9.1 −10.1 |
BH |
80.3+14.6 −10.2 |
0.81+0.07 −0.13 |
Largest progenitor masses until GW190521 | [12] |
GW170809 08:28:21 |
2018-11-30 | 340; towards Cetus |
990+320 −380 |
2.7+0.6 −0.6 |
25.0+2.1 −1.6 |
0.07+0.16 −0.16 |
BH |
35.2+8.3 −6.0 |
BH |
23.8+5.2 −5.1 |
BH |
56.4+5.2 −3.7 |
0.70+0.08 −0.09 |
[12] | |
GW170814 10:30:43 |
2017-09-27 | 87; towards Eridanus |
580+160 −210 |
2.7+0.4 −0.3 |
24.2+1.4 −1.1 |
0.07+0.12 −0.11 |
BH |
30.7+5.7 −3.0 |
BH |
25.3+2.9 −4.1 |
BH |
53.4+3.2 −2.4 |
0.72+0.07 −0.05 |
First announced detection by three observatories; first polarization measurement |
[25][26] |
GW170817 12:41:04 |
2017-10-16 | 16; NGC 4993 |
40±10 |
≥ 0.04 |
1.186+0.001 −0.001 |
0.00+0.02 −0.01 |
NS |
1.46+0.12 −0.10 |
NS |
1.27+0.09 −0.09 |
NS [n 10] |
≤ 2.8[n 11] | ≤ 0.89 |
First NS merger observed in GW; first detection of EM counterpart (GRB 170817A; AT 2017gfo); nearest event to date |
[16][29][30] |
GW170818 02:25:09 |
2018-11-30 | 39; towards Pegasus |
1020+430 −360 |
2.7+0.5 −0.5 |
26.7+2.1 −1.7 |
−0.09+0.18 −0.21 |
BH |
35.5+7.5 −4.7 |
BH |
26.8+4.3 −5.2 |
BH |
59.8+4.8 −3.8 |
0.67+0.07 −0.08 |
[12] | |
GW170823 13:13:58 |
2018-11-30 | 1651 |
1850±840 |
3.3+0.9 −0.8 |
29.3+4.2 −3.2 |
0.08+0.20 −0.22 |
BH |
39.6+10.0 −6.6 |
BH |
29.4+6.3 −7.1 |
BH |
65.6+9.4 −6.6 |
0.71+0.08 −0.10 |
[12] | |
GW190408_181802 2019-04-08 |
2020-10-27 | 140 |
1580+400 −590 |
18.3+1.4 −1.2 |
−0.03+0.13 −0.19 |
BH |
24.5+5.1 −3.4 |
BH |
18.3+3.2 −3.5 |
BH |
41.0+3.8 −2.7 |
0.67+0.06 −0.07 |
[31] | ||
GW190412 2019-04-12 05:30:44 |
2020-04-17 | 730+140 −170 |
13.3+0.4 −0.3 |
0.25+0.08 −0.11 |
BH |
29.7+5.0 −5.3 |
BH |
8.4+1.8 −1.0 |
BH |
37.0+4.1 −3.9 |
0.67+0.05 −0.07 |
First possible observation of a merger of two black holes of very different masses | [32][33] | ||
GW190413_052954 2019-04-13 |
2020-10-27 | 1400 |
4100+2410 −1890 |
24.0+5.4 −3.7 |
0.01+0.29 −0.33 |
BH |
33.4+12.4 −7.4 |
BH |
23.4+6.7 −6.3 |
BH |
54.3+12.4 −8.4 |
0.69+0.12 −0.13 |
[31] | ||
GW190413_134308 2019-04-13 |
2020-10-27 | 520 |
5150+2440 −2340 |
31.9+7.3 −4.6 |
−0.01+0.24 −0.28 |
BH |
45.4+13.6 −9.6 |
BH |
30.9+10.2 −9.6 |
BH |
72.8+15.2 −10.3 |
0.69+0.10 −0.12 |
[31] | ||
GW190421_213856 2019-04-21 |
2020-10-27 | 1000 |
3150+1370 −1420 |
30.7+5.5 −6.6 |
−0.05+0.23 −0.26 |
BH |
40.6+10.4 −6.6 |
BH |
31.4+7.5 −8.2 |
BH |
68.6+11.7 −8.1 |
0.68+0.10 −0.11 |
[31] | ||
GW190424_180648 2019-04-21 |
2020-10-27 | 26000 |
2550+1560 −1330 |
30.3+5.7 −4.2 |
0.15+0.22 −0.22 |
BH |
39.5+10.9 −6.9 |
BH |
31.0+7.4 −7.3 |
BH |
67.1+12.5 −9.2 |
0.75+0.08 −0.09 |
[31] | ||
GW190425 2019-04-25 08:18:05 |
2020-01-06 | 159+69 −72 |
1.44+0.02 −0.02 |
0.012+0.01 −0.01 |
NS |
1.60 - 1.87 |
NS |
1.46 - 1.69 |
? |
Originally designated S190425z (z:26th trigger|UTC day), this trigger was detected by a single LIGO instrument (of three LVC stations), and is considered by some scientists to have been confirmed as a binary neutron star merger.[35]
It was published in 2020 that a gamma-ray burst was detected (GRB 190425) ~0.5 seconds after the LIGO trigger, lasting 6 seconds and bearing similarities to GRB170817 (such as weakness [most power in sub-100 keV, or soft X-rays) bands], elevated energetic photon background levels [signal exceeding background by less than a factor of 2], and similar differences from other transients classified as short GRBs). Confidence was established for interpretation of a set of peaks through a control interval of only 2 days prior to the LIGO-Livingston trigger in INTEGRAL Electronic anticoincidence, could not be corroborated by other instruments and wasn't initially noted as a significant event. Non-detection in other instruments may be a consequence of an Earth-occulted source as the Fermi telescope attempted follow-up.[34] |
[36][37] | ||||
GW190521 2019-05-21 03:02:29 |
2020-09-02 | 5300+2400 −2600 |
7.6+2.2 −1.9 |
64+13 −8 |
0.08+0.27 −0.36 |
BH |
85+21 −14 |
BH |
66+17 −18 |
BH |
142+28 −16 |
0.72+0.09 −0.12 |
Originally designated S190521g. Largest progenitor masses to date. | [38][39] | |
GW190814 2019-08-14 21:11:18 | 2020-06-23 | 241+41 −45 |
6.09+0.06 −0.06 |
−0.002+0.06 −0.061 |
BH |
23.2+1.1 −1.0 |
? |
2.59+0.08 −0.09 |
BH |
25.6+1.1 −0.9 |
0.28+0.02 −0.02 |
No optical counterpart was discovered despite an extensive search of the probability region. The mass of the lighter component is estimated to be 2.6 times the mass of the Sun, placing it in the mass gap between neutron stars and black holes.[40] | [41][42][43][44][45] [46][47][48][49] | ||
GW200105 2020-01-05 16:24:26 |
2021-06-29 | 7200 |
280±110 |
3.41+0.08 −0.07 |
−0.01+0.11 −0.15 |
BH |
8.9+1.2 −1.5 |
NS |
1.9+0.3 −0.2 |
BH |
10.4+2.7 −2.0 |
0.43+0.04 −0.03 |
First event confirmed to be a black hole and neutron star merger. Originally designated S200105ae. | [50][51] | |
GW200115 2020-01-15 04:23:09 |
2021-06-29 | 600 |
300+150 −100 |
2.42+0.05 −0.07 |
−0.19+0.23 −0.35 |
BH |
5.7+1.8 −2.1 |
NS |
1.5+0.7 −0.3 |
BH |
7.8+1.4 −1.6 |
0.38+0.04 −0.03 |
Second event confirmed to be a black hole and neutron star merger. Originally designated S200115j. | [50][52] | |

Candidate events and marginal detections
Marginal detections from O1 and O2
In addition to well-constrained detections listed above, a number of low-significance detections of possible signals were made by LIGO and Virgo. Their characteristics are listed below:
candidate event | Detection time (UTC) |
date published | Luminosity distance (Mpc)[n 12] |
Detector [n 13] |
False Alarm Rate (Yr) |
Effective spin | Primary | Secondary | probability of terrestrial noise |
Notes | Ref | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Mass (M☉) | Type | Mass (M☉) | ||||||||||
150928 | 2015-09-28 10:49:00 | 2018-11-05 | H,L | 0.042 | -0.70 | NS | 2.53 | NS | 1.02 | ~0.9 | [53] | ||
151011 | 2015-10-11 19:27:49 | 2019-10-11 | 1560+1090 −740 | H,L | 0.12 | 0.09+0.29 −0.27 | BH | 51+18 −12 | BH | 31±12 | 0.92 | [54] | |
151019 | 2015-10-19 00:23:16 | 2018-11-05 | H,L | 0.060 | 0.11 | BH | 14.93 | NS | 1.27 | ~0.9 | [53] | ||
151205 | 2015-12-05 19:55:25 | 2019-10-11 | 3000+2400 −1600 | H,L | 0.61 | 0.14+0.40 −0.38 | BH | 67+28 −17 | BH | 42+16 −19 | 0.47 | [54] | |
151213 | 2015-12-13 00:12:20 | 2018-11-05 | H,L | 0.309 | -0.79 | BH | 11.12 | Mass gap | 3.30 | 0.953 | [53] | ||
151216A | 2015-12-16 09:24:16 | 2019-10-11 | 1620+1140 −910 | H,L | 0.10 | 0.51+0.21 −0.57 | BH | 41+15 −17 | BH | 14.4+7.0 −6.3 | 0.82 | [54] | |
151216B | 2015-12-16 18:49:30 | 2019-10-11 | 500+280 −250 | H,L | 0.03 | −0.03+0.24 −0.49 | BH | 19.7+6.4 −7.4 | Mass gap | 3.25+1.32 −0.58 | 0.93 | Smaller mass could be a neutron star | [54] |
151217 | 2015-12-17 03:47:49 | 2019-10-11 | 1000+660 −440 | H,L | 0.15 | 0.70+0.15 −0.50 | BH | 46+13 −26 | BH | 8.2+5.1 −1.7 | 0.74 | [54] | |
151222 | 2015-12-22 05:28:26 | 2018-11-05 | H,L | 0.075 | -0.74 | BH | 6.86 | Mass gap | 3.26 | 0.988 | [53] | ||
151231 | 2015-12-31 00:40:30 | 2019-02-27 | H,L | 0.85 | [55] | ||||||||
160103 | 2016-01-03 05:48:36 | 2018-11-05 | H,L | 0.396 | 0.49 | BH | 9.75 | BH | 7.29 | 0.939 | [53] | ||
170104 | 2017-01-04 21:58:40 | 2019-10-11 | 4600+4300 −3100 | H,L | 0.03 | 0.25+0.50 −0.49 | BH | 98+49 −40 | BH | 44+30 −33 | 0.88 | [54] | |
170121 | 2017-01-21 21:25:36 | 2019-04-15 | H,L | −0.3±0.3 | BH | 29+4 −3 | BH | <0.01 | [56] | ||||
170123 | 2017-01-23 20:16:42 | 2019-10-11 | 2800+2800 −1600 | H,L | 0.04 | −0.12+0.31 −0.35 | BH | 44+23 −12 | BH | 28±13 | 0.92 | [54] | |
170201 | 2017-02-01 11:03:12 | 2019-10-11 | 1530+1360 −770 | H,L | 0.16 | 0.44+0.28 −0.54 | BH | 48+13 −23 | BH | 13.1+8.6 −3.7 | 0.76 | [54] | |
170202 | 2017-02-02 13:56:57 | 2019-10-11 | 1220+980 −640 | H,L | 0.06 | −0.06+0.27 −0.32 | BH | 33+17 −11 | BH | 13.8+7.0 −4.8 | 0.87 | [54] | |
170220 | 2017-02-20 11:36:24 | 2019-10-11 | 3600+3700 −2100 | H,L | 0.05 | 0.28+0.33 −0.37 | BH | 69+37 −25 | BH | 31+22 −14 | 0.90 | [54] | |
170304 | 2017-03-04 16:37:53 | 2019-10-11 | 2300+1600 −1200 | H,L | 2.5 | 0.11+0.29 −0.27 | BH | 44.9+17.6 −9.4 | BH | 31.8+9.5 −11.6 | 0.30 | [54] | |
170402 | 2017-04-02 21:51:50 | 2019-10-21 | H,L | 0.32 | [57] | ||||||||
170403 | 2017-04-03 23:06:11 | 2019-10-11 | 2500+2100 −1300 | H,L | 0.07 | −0.20+0.35 −0.37 | BH | 53+23 −13 | BH | 35+13 −15 | 0.97 | [54] | |
170425 | 2017-04-25 05:53:34 | 2019-10-11 | 2600+2000 −1300 | H,L | 0.20 | −0.06+0.28 −0.32 | BH | 45+21 −11 | BH | 30±11 | 0.79 | [54] | |
170620 | 2017-06-20 01:14:02 | 2019-10-11 | 1710+1300 −850 | H,L | 0.04 | 0.05±0.25 | BH | 29.4+13.2 −6.8 | BH | 17.9+5.4 −5.5 | 0.98 | [54] | |
170629 | 2017-06-29 04:13:55 | 2019-10-11 | 1880+1450 −940 | H,L | 0.06 | 0.73+0.15 −0.98 | BH | 49+20 −30 | BH | 7.3+4.6 −2.6 | 0.98 | [54] | |
170721 | 2017-07-21 05:55:13 | 2019-10-11 | 1160+750 −520 | H,L | 0.04 | −0.06+0.25 −0.29 | BH | 31.7+9.3 −6.1 | BH | 21.4+5.3 −5.6 | 0.94 | [54] | |
170727 | 2017-07-27 01:04:30 | 2019-10-11 | 2200+1500 −1100 | H,L | 180 | −0.05+0.25 −0.30 | BH | 41.6+12.8 −7.9 | BH | 30.4+7.9 −8.2 | 0.006 | [54] | |
170801 | 2017-08-01 23:28:19 | 2019-10-11 | 1070+920 −580 | L,V | 0.04 | −0.09+0.25 −0.24 | BH | 23.9+12.6 −6.6 | BH | 12.4+4.7 −4.0 | 0.99 | [54] | |
170817A | 2017-08-17 03:02:46 | 2019-10-21 | H,L,V | 11.5 | 0.5±0.2 | BH | 56+16 −10 | BH | 40+10 −11 | 0.14 | [57] | ||
170818 | 2017-08-18 09:34:45 | 2019-10-11 | 3100+1700 −1900 | H,V | 0.04 | 0.06+0.48 −0.45 | BH | 55+59 −28 | BH | 23+43 −15 | 0.99 | [54] |
Observation candidates from O3/2019
From observation run O3/2019 on, observations are published as Open Public Alerts to facilitate multi-messenger observations of events.[58][59][60] Candidate event records can be directly accessed at the Gravitational-Wave Candidate Event Database (GraceDB).[61] On 1 April 2019, the start of the third observation run was announced with a circular published in the public alerts tracker.[62] The first O3/2019 binary black hole detection alert was broadcast on 8 April 2019. A significant percentage of O3 candidate events detected by LIGO are accompanied by corresponding triggers at Virgo.
False alarm rates are mixed, with more than half of events assigned false alarm rates greater than 1 per 20 years, contingent on presence of glitches around signal, foreground electromagnetic instability, seismic activity, and operational status of any one of the three LIGO-Virgo instruments. For instance, events S190421ar and S190425z weren't detected by Virgo and LIGO's Hanford site, respectively.
The LIGO/Virgo collaboration took a short break from observing during the month of October 2019 to improve performance and prepare for future plans, with no signals detected in that month as a result.[63]
The Kamioka Gravitational Wave Detector (KAGRA) in Japan became operational on 25 February 2020,[64] likely improving the detection and localization of future gravitational wave signals.[65] However, KAGRA does not report their signals in real-time on GraceDB as LIGO and Virgo do, so the results of their observation run will likely not be published until the end of O3.
The LIGO-Virgo collaboration ended the O3 run early on March 27, 2020, due to health concerns from the COVID-19 pandemic.[5][66]
1
2
3
4
5
6
7
8
9
10
19/04
19/05
19/06
19/07
19/08
19/09
19/10
19/11
19/12
20/01
20/02
20/03
|
2
4
6
8
10
12
14
16
18
20
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1-2 Gpc
2-5 Gpc
5+ Gpc
|
GW event | Detection time (UTC) |
Location area[n 14] (deg2) |
Luminosity distance (Mpc)[n 15] |
Detector [n 16] |
False Alarm Rate (Hz) |
False Alarm chance in O3[n 17] |
Classification | Notes | Ref | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS / NS [n 18] |
NS / BH [n 19] |
BH / BH [n 20] |
Mass gap [n 21] |
Terrestrial [n 22] | |||||||||
S190408an | 2019-04-08 18:18:02 |
1473±358 |
H,L,V | 2.8 10−18 | 8.0 10−11 | 0.0 | 0.0 | ~1.0 | 0.0 | 9.8e−12 | [67][68] | ||
S190421ar | 2019-04-21 21:38:56 |
1444 |
1628±535 |
H,L | 1.5 10−8 | 0.348 | 0.0 | 0.0 | 0.967 | 0.0 | 0.033 | Initially marked with 96% chance of having a terrestrial origin ["noise"], but later upgraded to 97% chance of being a binary black hole merger. | [69] |
S190426c | 2019-04-26 15:21:55 |
1131 |
377±100 |
H,L,V | 1.9 10−8 | 0.418 | 0.244 | 0.064 | 0.0 | 0.117 | 0.575 | Initially marked with 49% chance of being binary neutron star merger, 13% neutron star-black hole merger, 24% mass gap merger. Later marked with a 52% chance of NS-BH, 22% mass gap, 13% BNS, and 14% terrestrial, before being revised to the current solution |
[70][71] |
S190503bf | 2019-05-03 18:54:04 |
421±105 |
H,L,V | 1.6 10−9 | 0.045 | 0.0 | 0.0047 | 0.963 | 0.032 | 0.00012 | [73] | ||
S190510g | 2019-05-10 02:59:39 |
1166; towards Columba or Canis Major |
227±92 |
H,L,V | 8.8 10−9 | 0.222 | 0.42 | 0.0 | 0.0 | 0.0 | 0.58 | Initially reported with a 2% chance of terrestrial origin ["noise"], later downgraded to ~58% terrestrial foreground probability ["noise"]. | [74] |
S190512at | 2019-05-12 18:07:14 |
1388±322 |
H,L,V | 1.9 10−9 | 0.053 | 0.0 | 0.0 | 0.990 | 0.0 | 0.010 | [75] | ||
S190513bm | 2019-05-13 20:54:28 |
1987±501 |
H,L,V | 3.7 10−13 | 1.1 10−5 | 0.0 | 0.0052 | 0.943 | 0.052 | 6.0e−8 | [76] | ||
S190517h | 2019-05-17 05:51:01 |
939 |
2950±1038 |
H,L,V | 1.8 10−12 | 5.1 10−5 | 0.0 | 0.00077 | 0.983 | 0.017 | 0.000043 | [77] | |
S190519bj | 2019-05-19 15:35:44 |
967 |
3154±791 |
H,L,V | 5.7 10−9 | 0.150 | 0.0 | 0.0 | 0.956 | 0.0 | 0.044 | [78] | |
S190521r | 2019-05-21 07:43:59 |
1136±279 |
H,L | 3.2 10−10 | 0.009 | 0.0 | 0.0 | 0.9993 | 0.0 | 0.00067 | [79] | ||
S190602aq | 2019-06-02 17:59:27 |
1172 |
797±238 |
H,L,V | 1.9 10−9 | 0.053 | 0.0 | 0.0 | 0.990 | 0.0 | 0.0097 | [80] | |
S190630ag | 2019-06-30 18:52:05 |
1483 |
926±259 |
L,V | 1.4 10−13 | 4.0 10−6 | 0.0 | 0.0052 | 0.943 | 0.052 | 1.8e−7 | [81] | |
S190701ah | 2019-07-01 20:33:45 | 1849±446 |
H,L,V | 1.9 10−8 | 0.418 | 0.0 | 0.0 | 0.934 | 0.0 | 0.066 | [82] | ||
S190706ai | 2019-07-06 22:26:57 | 826 |
5263±1402 |
H,L,V | 1.9 10−9 | 0.053 | 0.0 | 0.0 | 0.990 | 0.0 | 0.010 | [83] | |
S190707q | 2019-07-07 09:33:44 | 921 |
781±211 |
H,L | 5.3 10−12 | 1.5 10−4 | 0.0 | 0.0 | 0.999989 | 0.0 | 0.000011 | [84] | |
S190718y | 2019-07-18 14:35:12 | 7246 |
227±165 |
H,L,V | 3.6 10−8 | 0.642 | 0.022 | 0.0 | 0.0 | 0.0 | 0.979 | Estimated to have a 98% chance to be terrestrial noise, despite passing data quality checks. | [85] |
S190720a | 2019-07-20 00:08:53 | 443; mostly towards Cygnus |
869±283 |
H,L | 3.8 10−9 | 0.103 | 0.0 | 0.0 | 0.989 | 0.0 | 0.011 | Initially reported with a 71% chance of being terrestrial "noise" [non-cosmological in origin], upgraded to 1% after preliminary Virgo detector signal path inconsistency found to be insignificant. | [86] |
S190727h | 2019-07-27 06:03:51 | 2839±655 |
H,L,V | 1.4 10−10 | 0.004 | 0.0 | 0.0018 | 0.922 | 0.028 | 0.048 | [87] | ||
S190728q | 2019-07-28 06:45:27 | 874±171 |
H,L,V | 2.5 10−23 | 7.1 10−16 | 0.0 | 0.144 | 0.340 | 0.516 | 3.6e-13 | Updated from an initial estimate which gave 14.4% NS/BH, 34.0% BH/BH, 51.6% mass gap, and a later estimate which gave a virtually certain BH/BH merger. | [88] | |
S190828j | 2019-08-28 06:34:05 | 1946±388 |
H,L,V | 8.5 10−22 | 2.4 10−14 | 0.0 | 0.0 | ~1.0 | 0.0 | 3.8e-14 | [89] | ||
S190828l | 2019-08-28 06:55:09 | 1528±387 |
H,L,V | 4.6 10−11 | 0.001 | 0.0 | 0.0 | 0.9996 | 0.0 | 0.00041 | [90] | ||
S190901ap | 2019-09-01 23:31:01 |
14753 |
241±79 |
L,V | 7.0 10−9 | 0.181 | 0.861 | 0.0 | 0.0 | 0.0 | 0.139 | [91] | |
S190910d | 2019-09-10 01:26:19 |
2482 |
632±186 |
H,L | 3.7 10−9 | 0.100 | 0.0 | 0.976 | 0.0 | 0.0 | 0.024 | [92] | |
S190910h | 2019-09-10 08:29:58 |
24264 |
230±88 |
L | 3.6 10−8 | 0.642 | 0.612 | 0.0 | 0.0 | 0.0 | 0.388 | Detected by only the Livingston detector, resulting in a bad sky localization. | [93] |
S190915ak | 2019-09-15 23:57:25 | 1584±381 |
H,L,V | 9.7 10−10 | 0.027 | 0.0 | 0.0 | 0.995 | 0.0 | 0.0053 | [94] | ||
S190923y | 2019-09-23 12:55:59 | 2107 |
438±133 |
H,L | 4.8 10−8 | 0.746 | 0.0 | 0.677 | 0.0 | 0.0 | 0.322 | [95] | |
S190924h | 2019-09-24 02:18:46 | 548±112 |
H,L,V | 8.9 10−19 | 2.5 10−11 | 0.0 | 0.0 | 0.0 | ~1.0 | 4.7e-11 | The other component of the merger has a 29.7% chance of being a neutron star, and a 70.3% chance of being either a black hole, or another object in the mass gap. | [96] | |
S190930s | 2019-09-30 13:35:41 | 1748 |
709±191 |
H,L | 3.0 10−9 | 0.082 | 0.0 | 0.0 | 0.0 | 0.951 | 0.049 | The other component is either a black hole or another object in the mass gap. | [97] |
S190930t | 2019-09-30 14:34:07 | 24220 |
108±38 |
L | 1.5 10−8 | 0.348 | 0.0 | 0.743 | 0.0 | 0.0 | 0.257 | Detected by only the Livingston detector, resulting in a bad sky localization; last detection of the O3a run. | [98] |
S191105e | 2019-11-05 14:35:21 | 643 |
1183±281 |
H,L,V | 2.3 10−8 | 0.481 | 0.0 | 0.0 | 0.953 | 0.0 | 0.047 | First detection of the O3b run. | [99] |
S191109d | 2019-11-09 01:07:17 | 1487 |
1810±604 |
H,L | 1.5 10−13 | 4.3 10−6 | 0.0 | 0.0 | 0.9999978 | 0.0 | 0.0000022 | [100] | |
S191129u | 2019-11-29 13:40:29 | 852 |
742±180 |
H,L | 2.7 10−35 | 7.7 10−28 | 0.0 | 0.0 | ~1.0 | 0.0 | 1.2e-27 | [101] | |
S191204r | 2019-12-04 17:15:25 | 678±149 |
H,L,V | 3.1 10−25 | 8.8 10−18 | 0.0 | 0.0 | ~1.0 | 0.0 | 8.7e-18 | [102] | ||
S191205ah | 2019-12-05 21:52:08 | 6378 |
385±164 |
H,L,V | 1.2 10−8 | 0.290 | 0.0 | 0.932 | 0.0 | 0.0 | 0.068 | [103] | |
S191213g | 2019-12-13 04:34:08 | 4480 |
201±81 |
H,L,V | 3.5 10−8 | 0.631 | 0.768 | 0.0 | 0.0 | 0.0 | 0.232 | [104] | |
S191215w | 2019-12-15 22:30:52 | 1770±455 |
H,L,V | 1.0 10−9 | 0.028 | 0.0 | 0.0 | 0.997 | 0.0 | 0.0028 | [105] | ||
S191216ap | 2019-12-16 21:33:38 | 376±70 |
H,V | 1.1 10−23 | 3.1 10−16 | 0.0 | 0.0 | 0.9907 | 0.0093 | 8.4e-16 | Initially reported to have a ~100% chance of having a component in the mass gap. | [106] | |
S191222n | 2019-12-22 03:35:37 | 2324 |
868±265 |
H,L | 6.5 10−12 | 1.9 10−4 | 0.0 | 0.0 | 0.999962 | 0.0 | 0.000038 | [107] | |
S200112r | 2020-01-12 15:58:38 | 4004 |
1125±289 |
L,V | 1.3 10−11 | 3.7 10−4 | 0.0 | 0.0 | 0.99966 | 0.0 | 0.00034 | [108] | |
S200114f | 2020-01-14 02:08:18 | ? |
H,L,V | 1.2 10−9 | 0.034 | 0.0 | 0.0 | 0.0 | 0.0 | ? | Unidentified gravitational wave "burst" lasting 0.014 seconds at a frequency of tens of Hertz. | [109] | |
S200128d | 2020-01-28 02:20:36 | 2293 |
3702±1265 |
H,L | 1.6 10−8 | 0.366 | 0.0 | 0.0 | 0.969 | 0.0 | 0.031 | [110] | |
S200129m | 2020-01-29 06:54:58 | 755±194 |
H,L,V | 6.7 10−32 | 1.9 10−24 | 0.0 | 0.0 | ~1.0 | 0.0 | 2.0e-24 | [111] | ||
S200208q | 2020-02-08 13:01:17 | 2142±459 |
H,L,V | 2.5 10−9 | 0.069 | 0.0 | 0.0 | 0.9936 | 0.0 | 0.0066 | [112] | ||
S200213t | 2020-02-13 04:10:40 | 2326 |
201±80 |
H,L,V | 1.8 10−8 | 0.401 | 0.629 | 0.0 | 0.0 | 0.0 | 0.371 | [113] | |
S200219ac | 2020-02-19 09:44:15 | 1251 |
1510±405 |
H,L,V | 1.3 10−8 | 0.310 | 0.0 | 0.0 | 0.964 | 0.0 | 0.036 | [114] | |
S200224ca | 2020-02-24 22:22:34 | 1585±331 |
H,L,V | 1.6 10−11 | 4.6 10−4 | 0.0 | 0.0 | 0.999966 | 0.0 | 0.000034 | [115] | ||
S200225q | 2020-02-25 06:04:21 | 22; towards Ursa Minor or Cepheus |
995±188 |
H,L | 9.2 10−9 | 0.231 | 0.0 | 0.0 | 0.957 | 0.0 | 0.043 | [116] | |
S200302c | 2020-03-02 01:58:11 | 6704 |
1737±500 |
H,V | 9.3 10−9 | 0.233 | 0.0 | 0.0 | 0.890 | 0.0 | 0.110 | [117] | |
S200311bg | 2020-03-11 11:58:53 | 34; towards Cetus |
1115±175 |
H,L,V | 8.9 10−26 | 2.5 10−18 | 0.0 | 0.0 | ~1.0 | 0.0 | 4.0e-17 | [118] | |
S200316bj | 2020-03-16 21:57:56 | 1117 |
1222±340 |
H,L,V | 7.1 10−11 | 0.002 | 0.0 | 0.0 | 0.0 | 0.9957 | 0.0043 | The other component is a black hole. | [119] |
Observation candidates from O4/2023
On 15 June 2022, LIGO announced to start the O4 observing run in March 2023.[120] As the date got closer, engineering challenges delayed the observing run to May 2023.[121] An engineering run to assess the sensitivity of LIGO, Virgo, and KAGRA began in April, with the Hanford detector's first operations beginning on April 29,[122] and the Livingston and Virgo detectors' first operations beginning on May 5.[123]
Near the end of the engineering run on 15 May 2023, LIGO announced that O4 would be beginning on 24 May 2023, running for 20 months with up to 2 months of maintenance. The LIGO detectors failed to achieve the hoped for 160-190 mpc sensitivity for neutron star mergers, but did achieve an improved 130-150 mpc sensitivity over O3's 100-140 mpc. Virgo was found to have a damaged mirror, delaying its observing run until late June, and KAGRA achieved its planned 1 mpc neutron star merger sensitivity, with further plans to upgrade beyond 10 mpc by the end of the observing run.
On 18 May 2023, near the end of the engineering run and shortly before O4 proper, the first candidate gravitational wave event was detected.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
23/05
23/06
23/07
23/08
23/09
23/10
23/11
23/12
|
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1-2 Gpc
2-5 Gpc
5+ Gpc
|
GW event | Detection time (UTC) |
Location area[n 23] (deg2) |
Luminosity distance (Mpc)[n 24] |
Detector [n 25] |
False Alarm Rate (Hz) |
False Alarm chance in O4[n 26] |
Classification | Notes | Ref | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS / NS [n 27] |
NS / BH [n 28] |
BH / BH [n 29] |
Mass gap [n 30] |
Terrestrial [n 31] | |||||||||
S230518h | 2023-05-18 12:59:07 |
666 |
278±68 |
H,L | 3.2 10-10 | 0.017 | 0.0 | 0.864 | 0.037 | 0.0 | 0.099 | [124][125] |
See also
- GRB 150101B, a weak gamma-ray burst trigger observed prior to aLIGO O1 (beginning September 12, 2015), with claimed similarities to model-supported possible neutron star merger GW170817/GRB 170817A/AT2017gfo.
Notes
- The detection date of a GW event is indicated by its designation; i.e., event GW150914 was detected on 2015-09-14.
- The relatively large and distant area of the sky within which it is claimed to be possible to localize the source.
- 1 Mpc is approximately 3.26 Mly.
- c2M☉ is about 1.8×103 foe; 1.8×1047 J; 1.8×1054 erg; 4.3×1046 cal; 1.7×1044 BTU; 5.0×1040 kWh, or 4.3×1037 tonnes of TNT.
- The chirp mass is the binary parameter most relevant to the evolution of the inspiral gravitational waveform, and thus is the mass that can be measured most accurately. It is related to, but less than, the geometric mean of the binary masses, according to , thus ranging from ~87% of when the masses are the same to ~78% when they differ by an order of magnitude.
- The dimensionless effective inspiral spin parameter is: [13] where is the mass of a black hole, is its spin, and is the angle between the orbital angular momentum and a merging black hole's spin (ranging from when aligned to when antialigned). It is the mass-weighted linear combination of the components of the black holes' spins aligned with the orbital axis[13][12] and has values ranging from −1 to 1 (the extremes correspond to situations with both black hole spins exactly antialigned and aligned, respectively, with orbital angular momentum).[14] This is the spin parameter most relevant to the evolution of the inspiral gravitational waveform, and it can be measured more accurately than those of the premerger BHs.[15]
- Values of the dimensionless spin parameter cJ/GM2 for a black hole range from zero to a maximum of one. The macroscopic properties of an isolated astrophysical (uncharged) black hole are fully determined by its mass and spin. Values for other objects can potentially exceed one. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7.[16]
- Spin estimate is 0.26+0.52
−0.24.[17] - Spin estimate is 0.32+0.54
−0.29.[17] - Based on a descending spin-down chirp observed in GW post-merger, a magnetar was produced that survived at least 5 seconds.[27]
- Besides the loss of mass due to GW emission that occurred during the merger, the event is thought to have ejected 0.05±0.02 M☉ of material.[28]
- 1 Mpc is approximately 3.26 Mly.
- Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
- The area of the sky within which it was possible to localize the source.
- 1 Mpc is approximately 3.26 Mly.
- Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
- The chance a random signal of this significance would occur at any point in O3's 11-month run. Calculated by 1 - (1-false alarm rate in Hz)28,512,000. This is not the chance of the given signal being 'real' or not: Background contamination (such as earthquakes) can cause statistically significant signals as well, and although four detections have a >50% chance to have occurred randomly in O3, there is only a 19.4% chance that none of these signals would be real.
- Probability that both components have mass < 3 M☉
- Probability that one component has mass < 3 M☉ and the other has mass > 5 M☉
- Probability that both components have mass > 5 M☉
- Probability that at least one component has a mass in the range 3-5 M☉, between those of known neutron stars and black holes, a range sometimes identified as the "lower" mass gap
- Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])
- The area of the sky within which it was possible to localize the source.
- 1 Mpc is approximately 3.26 Mly.
- Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
- The chance a random signal of this significance would occur at any point in O4's 20-month run. Calculated by 1 - (1-false alarm rate in Hz)51,840,000. This is not the chance of the given signal being 'real' or not: Background contamination (such as earthquakes) can cause statistically significant signals as well.
- Probability that both components have mass < 3 M☉
- Probability that one component has mass < 3 M☉ and the other has mass > 5 M☉
- Probability that both components have mass > 5 M☉
- Probability that at least one component has a mass in the range 3-5 M☉, between those of known neutron stars and black holes, a range sometimes identified as the "lower" mass gap
- Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])
References
- "GW150914 - The First Direct Detection of Gravitational Waves". www.ligo.org. Retrieved 2023-03-15.
- "LSC News". www.ligo.org. Retrieved 2023-03-15.
- The LIGO Scientific Collaboration; the Virgo Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B. (2019-09-04). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. Bibcode:2019PhRvX...9c1040A. doi:10.1103/PhysRevX.9.031040. ISSN 2160-3308. S2CID 119366083.
- Burtnyk, Kimberly (2019-10-01). "LIGO's Commissioning Break Commences". LIGO Lab | Caltech. Retrieved 2020-07-01.
- "LIGO Suspends Third Observing Run (O3)". LIGO Lab. Caltech. Retrieved 20 April 2020.
- "LSC News". www.ligo.org. Retrieved 2023-03-15.
- Ligo, Virgo and Kagra Observing Run Plans
- "GCN/LVC Notices". Goddard Space Flight Center. Retrieved 2019-11-11.
- Fragione, Giacomo; et al. (2019). "Black Hole and Neutron Star Mergers in Galactic Nuclei". Monthly Notices of the Royal Astronomical Society. 488 (1): 47–63. arXiv:1811.10627. Bibcode:2019MNRAS.488...47F. doi:10.1093/mnras/stz1651. S2CID 85459844.
- Strickland, Ashley (3 May 2019). "Scientists may have detected violent collision between neutron star, black hole". CNN. Retrieved 3 May 2019.
- Nitz, Alexander H. (25 February 2019). "1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data". Astrophysical Journal. 872 (2): 195. arXiv:1811.01921. Bibcode:2019ApJ...872..195N. doi:10.3847/1538-4357/ab0108. S2CID 119389481.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2019). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. Bibcode:2019PhRvX...9c1040A. doi:10.1103/PhysRevX.9.031040. S2CID 119366083.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973. S2CID 206291714.
- Farr, W. M.; Stevenson, S.; Miller, M. C.; Mandel, I.; F arr, B.; Vecchio, A. (2017). "Distinguishing spin-aligned and isotropic black hole populations with gravitational waves". Nature. 548 (7667): 426–429. arXiv:1706.01385. Bibcode:2017Natur.548..426F. doi:10.1038/nature23453. PMID 28836595. S2CID 4411726.
- Vitale, S.; Lynch, R.; Raymond, V.; Sturani, R.; Veitch, J.; Graff, P. (2017). "Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors". Physical Review D. 95 (6): 064053. arXiv:1611.01122. Bibcode:2017PhRvD..95f4053V. doi:10.1103/PhysRevD.95.064053. hdl:1721.1/109575. S2CID 118511535.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611.
- The LIGO Scientific Collaboration and The Virgo Collaboration (3 June 2016). "An improved analysis of GW150914 using a fully spin-precessing waveform model". Physical Review X. 6 (4): 041014. arXiv:1606.01210. Bibcode:2016PhRvX...6d1014A. doi:10.1103/PhysRevX.6.041014. S2CID 18217435.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (11 February 2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
- Tushna Commissariat (11 February 2016). "LIGO detects first ever gravitational waves – from two merging black holes". Physics World.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (21 October 2016). "Binary Black Hole Mergers in the first Advanced LIGO Observing Run". Physical Review X. 6 (4): 041015. arXiv:1606.04856. Bibcode:2016PhRvX...6d1015A. doi:10.1103/PhysRevX.6.041015. S2CID 31926886.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. S2CID 118651851.
- Nemiroff, R.; Bonnell, J., eds. (15 June 2016). "GW151226: A Second Confirmed Source of Gravitational Radiation". Astronomy Picture of the Day. NASA.
- Overbye, Dennis (1 June 2017). "Gravitational Waves Felt From Black-Hole Merger 3 Billion Light-Years Away". New York Times. Retrieved 1 June 2017.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (18 December 2017). "GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence". The Astrophysical Journal Letters. 851 (2): L35. arXiv:1711.05578. Bibcode:2017ApJ...851L..35A. doi:10.3847/2041-8213/aa9f0c. S2CID 9030576.
- Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017-10-06). "GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence". Phys. Rev. Lett. 119 (14): 141101. arXiv:1709.09660. Bibcode:2017PhRvL.119n1101A. doi:10.1103/PhysRevLett.119.141101. PMID 29053306. S2CID 46829350.
- "Gravitational waves from a binary black hole merger observed by LIGO and Virgo" (PDF). LIGO Scientific Collaboration (Press release).
- Overbye, Dennis (27 September 2017). "New Gravitational Wave Detection From Colliding Black Holes". The New York Times. Retrieved 28 September 2017.
- van Putten, Maurice H.P.M.; Della Valle, Massimo (January 2019). "Observational evidence for extended emission to GW170817". Monthly Notices of the Royal Astronomical Society: Letters. 482 (1): L46–L49. arXiv:1806.02165. Bibcode:2019MNRAS.482L..46V. doi:10.1093/mnrasl/sly166.
- Drout, M. R.; Piro, A. L.; Shappee, B. J.; et al. (2017-10-16). "Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis". Science. 358 (6370): 1570–1574. arXiv:1710.05443. Bibcode:2017Sci...358.1570D. doi:10.1126/science.aaq0049. PMID 29038375.
- Abbott, B.P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9.
- Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. Retrieved 16 October 2017.
- The LIGO Scientific Collaboration; the Virgo Collaboration (2021). "GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run". Physical Review X. 11 (2): 021053. arXiv:2010.14527. Bibcode:2021PhRvX..11b1053A. doi:10.1103/PhysRevX.11.021053. S2CID 225094244.
- "Superevent info - S190412m". LIGO. Retrieved 12 April 2019.
- The LIGO Scientific Collaboration; the Virgo Collaboration; Abbott, R.; et al. (17 April 2020). "GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses". Physical Review D. 102 (4): 043015. arXiv:2004.08342. Bibcode:2020PhRvD.102d3015A. doi:10.1103/PhysRevD.102.043015. S2CID 215814461.
- Позаненко, А. С.; Минаев, П. Ю.; Гребенев, С. А.; Человеков, И. В. (2019). "Наблюдение в гамма-диапазоне второго связанного со слиянием нейтронных звезд события LIGO/Virgo S190425z". Письма В Астрономический Журнал: Астрономия И Космическая Астрофизика (in Russian). 45 (11): 768–786. arXiv:1912.13112. doi:10.1134/S032001081911007X. S2CID 239427905.
- "Gravitational waves reveal a second neutron star collision". 8 January 2020.
- "Superevent info - S190425z". LIGO. Retrieved 25 April 2019.
- The LIGO Scientific Collaboration; the Virgo Collaboration; et al. (6 January 2020). "GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M☉". The Astrophysical Journal. 892 (1): L3. arXiv:2001.01761. Bibcode:2020ApJ...892L...3A. doi:10.3847/2041-8213/ab75f5. S2CID 210023687.
- Abbott, R.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2 September 2020). "GW190521: A Binary Black Hole Merger with a Total Mass of 150 M ⊙". Physical Review Letters. 125 (10): 101102. arXiv:2009.01075. Bibcode:2020PhRvL.125j1102A. doi:10.1103/PhysRevLett.125.101102. PMID 32955328. S2CID 221447506.
- Abbott, R.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2 September 2020). "Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521". The Astrophysical Journal. 900 (1): L13. arXiv:2009.01190. Bibcode:2020ApJ...900L..13A. doi:10.3847/2041-8213/aba493. hdl:11343/273616. S2CID 221447444.
- "Black hole or neutron star?". June 23, 2020.
- "Superevent info - S190814bv". LIGO. Retrieved 15 August 2019.
- Starr, Michelle (16 August 2019). "Early Reports Indicate We May Have Detected a Black Hole And Neutron Star Collision". ScienceAlert.com. Retrieved 16 August 2019.
- Mandelbum, Ryan F. (26 August 2019). "Mystery Deepens Around Newly Detected Ripples in Space-Time". Gizmodo. Retrieved 26 August 2019.
- Starr, Michelle (11 February 2020). "First Papers on The Black Hole-Neutron Star Merger Are In. Here's What We Didn't See". ScienceAlert.com. Retrieved 11 February 2020.
- Ackley, K.; et al. (5 February 2020). "Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv". arXiv:2002.01950v1 [astro-ph.SR].
- Overbye, Dennis (24 June 2020). "A Black Hole's Lunch Provides a Treat for Astronomers - Scientists have discovered the heaviest known neutron star, or maybe the lightest known black hole: "Either way it breaks a record."". The New York Times. Retrieved 24 June 2020.
- Starr, Michelle (24 June 2020). "Astronomers Detect First-Ever Mystery Object in The 'Mass Gap' of Cosmic Collisions". ScienceAlert.com. Retrieved 24 June 2020.
- University of Birmingham (23 June 2020). "Gravitational wave scientists grapple with the cosmic mystery of GW190814". EurekAlert!. Retrieved 24 June 2020.
- Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2): L44. arXiv:2006.12611. Bibcode:2020ApJ...896L..44A. doi:10.3847/2041-8213/ab960f.
- Abbott, R.; et al. (2021). "Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences". The Astrophysical Journal Letters. 915 (1): L5. arXiv:2106.15163. Bibcode:2021ApJ...915L...5A. doi:10.3847/2041-8213/ac082e. S2CID 235670241.
- "Superevent info - S200105ae". LIGO. Retrieved 6 January 2020.
- "Superevent info - S200115j". LIGO. Retrieved 15 January 2020.
- Nitz, Alexander H.; Capano, Collin; Nielsen, Alex B.; Reyes, Steven; White, Rebecca; Brown, Duncan A.; Krishnan, Badri (25 February 2019). "1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data". The Astrophysical Journal. 872 (2): 195. arXiv:1811.01921. Bibcode:2019ApJ...872..195N. doi:10.3847/1538-4357/ab0108. S2CID 119389481.
- Nitz, Alexander H.; Dent, Thomas; Davies, Gareth S.; Kumar, Sumit; Capano, Collin D.; Harry, Ian; Mozzon, Simone; Nuttall, Laura; Lundgren, Andrew; Tápai, Márton (12 March 2020). "2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data". The Astrophysical Journal. 891 (2): 123. arXiv:1910.05331. Bibcode:2020ApJ...891..123N. doi:10.3847/1538-4357/ab733f. S2CID 204403263.
- Venumadhav, Tejaswi; Zackay, Barak; Roulet, Javier; Dai, Liang; Zaldarriaga, Matias (24 July 2019). "New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO". Physical Review D. 100 (2): 023011. arXiv:1902.10341. Bibcode:2019PhRvD.100b3011V. doi:10.1103/PhysRevD.100.023011. S2CID 84844069.
- Venumadhav, Tejaswi; Zackay, Barak; Roulet, Javier; Dai, Liang; Zaldarriaga, Matias (2020). "New Binary Black Hole Mergers in the Second Observing Run of Advanced LIGO and Advanced Virgo". Physical Review D. 101 (8): 083030. arXiv:1904.07214. Bibcode:2020PhRvD.101h3030V. doi:10.1103/PhysRevD.101.083030. S2CID 119188594.
- Zackay, Barak; Dai, Liang; Venumadhav, Tejaswi; Roulet, Javier; Zaldarriaga, Matias (2021). "Detecting Gravitational Waves With Disparate Detector Responses: Two New Binary Black Hole Mergers". Phys. Rev. D. 104 (8): 063030. arXiv:1910.09528. Bibcode:2020PhRvD.101h3030V. doi:10.1103/PhysRevD.101.083030. S2CID 119188594.
- "Real-time alerts and circulars tracker" – via nasa.gov.
- "Observing Plans and Public Alerts". www.ligo.org. LIGO Scientific Collaboration. October 2018. Retrieved 2018-10-28.
- Singer, Leo P. (16 March 2017). "What constitutes an open, public alert?" (PDF). LSC (LIGO Scientific Collaboration). Retrieved 30 October 2018 – via gw-astronomy.org.
- "GraceDB — Gravitational Wave Candidate Event Database" – via ligo.org.
- "Real-time alerts and circulars tracker" – via nasa.gov.
- "LIGO Announces Commissioning Break". LIGO Lab | Caltech. Retrieved 7 November 2019.
- "KAGRA Gravitational-wave Telescope Starts Observation « KAGRA Large-scale Cryogenic Graviationai wave Telescope Project" (in Japanese). Retrieved 2020-02-27.
- "KAGRA to Join LIGO and Virgo in Hunt for Gravitational Waves". LIGO Lab | Caltech. Retrieved 2019-10-06.
- "LIGO Laboratory's Response to COVID-19". LIGO Lab. Caltech. Retrieved 24 March 2020.
- "Superevent info - S190408an". LIGO. Retrieved 9 April 2019.
- XML file with preliminary information
- "Superevent info - S190421ar". LIGO. Retrieved 8 July 2019.
- "Superevent info - S190426c". LIGO. Retrieved 26 April 2019.
- Castelvecchi, Davide (26 April 2019). "Gravitational waves hint at detection of black hole eating star". Nature. 569 (7754): 15–16. Bibcode:2019Natur.569...15C. doi:10.1038/d41586-019-01377-2. PMID 31040413.
- Lundquist, M.J.; et al. (June 2019). "Searches After Gravitational-waves Using ARizona Observatories (SAGUARO): System Overview and First Resultsfrom Advanced LIGO/Virgo's Third Observing Run". The Astrophysical Journal. 881 (2): L26. arXiv:1906.06345. Bibcode:2019ApJ...881L..26L. doi:10.3847/2041-8213/ab32f2. S2CID 189927965.
- "Superevent info - S190503bf". LIGO. Retrieved 3 May 2019.
- "Superevent info - S190510g". LIGO. Retrieved 10 May 2019.
- "Superevent info - S190512at". LIGO. Retrieved 12 May 2019.
- "Superevent info - S190513bm". LIGO. Retrieved 13 May 2019.
- "Superevent info - S190517h". LIGO. Retrieved 17 May 2019.
- "Superevent info - S190519bj". LIGO. Retrieved 19 May 2019.
- "Superevent info - S190521r". LIGO. Retrieved 21 May 2019.
- "Superevent info - S190602aq". LIGO. Retrieved 2 June 2019.
- "Superevent info - S190630ag". LIGO. Retrieved 30 June 2019.
- "Superevent info - S190701ah". LIGO. Retrieved 1 July 2019.
- "Superevent info - S190706ai". LIGO. Retrieved 8 July 2019.
- "Superevent info - S190707q". LIGO. Retrieved 8 July 2019.
- "Superevent info - S190718y". LIGO. Retrieved 18 July 2019.
- "Superevent info - S190720a". LIGO. Retrieved 20 July 2019.
- "Superevent info - S190727h". LIGO. Retrieved 13 August 2019.
- "Superevent info - S190728q". LIGO. Retrieved 13 August 2019.
- "Superevent info - S190818j". LIGO. Retrieved 28 August 2019.
- "Superevent info - S190818l". LIGO. Retrieved 28 August 2019.
- "Superevent info - S190901ap". LIGO. Retrieved 6 September 2019.
- "Superevent info - S190910d". LIGO. Retrieved 10 September 2019.
- "Superevent info - S190910h". LIGO. Retrieved 10 September 2019.
- "Superevent info - S190915ak". LIGO. Retrieved 19 September 2019.
- "Superevent info - S190923y". LIGO. Retrieved 24 September 2019.
- "Superevent info - S190924h". LIGO. Retrieved 24 September 2019.
- "Superevent info - S190930s". LIGO. Retrieved 30 September 2019.
- "Superevent info - S190930t". LIGO. Retrieved 30 September 2019.
- "Superevent info - S191105e". LIGO. Retrieved 5 November 2019.
- "Superevent info - S191109d". LIGO. Retrieved 9 November 2019.
- "Superevent info - S191129u". LIGO. Retrieved 8 December 2019.
- "Superevent info - S191204r". LIGO. Retrieved 4 December 2019.
- "Superevent info - S191205ah". LIGO. Retrieved 5 December 2019.
- "Superevent info - S191213g". LIGO. Retrieved 14 December 2019.
- "Superevent info - S191215w". LIGO. Retrieved 23 December 2019.
- "Superevent info - S191216ap". LIGO. Retrieved 25 December 2019.
- "Superevent info - S191222n". LIGO. Retrieved 22 December 2019.
- "Superevent info - S200112r". LIGO. Retrieved 12 January 2020.
- "Superevent info - S200114f". LIGO. Retrieved 14 January 2020.
- "Superevent info - S200128d". LIGO. Retrieved 28 January 2020.
- "Superevent info - S200129m". LIGO. Retrieved 29 January 2020.
- "Superevent info - S200208q". LIGO. Retrieved 8 February 2020.
- "Superevent info - S200213t". LIGO. Retrieved 13 February 2020.
- "Superevent info - S200219ac". LIGO. Retrieved 19 February 2020.
- "Superevent info - S200224ca". LIGO. Retrieved 25 February 2020.
- "Superevent info - S200225q". LIGO. Retrieved 26 February 2020.
- "Superevent info - S200302c". LIGO. Retrieved 2 March 2020.
- "Superevent info - S200311bg". LIGO. Retrieved 11 March 2020.
- "Superevent info - S200316bj". LIGO. Retrieved 17 March 2020.
- "LIGO, Virgo and Kagra Observing Run Plans". LIGO Lab. Caltech. Retrieved 16 July 2022.
- Burtnyk, Kimberly. "Latest Update on Start of Next Observing Run (O4)". LIGO. Caltech. Retrieved 18 May 2023.
- "Detector status - 29 April 2023". gwosc.org. Retrieved 18 May 2023.
- "Detector status - 5 May 2023". gwosc.org.
- "Superevent info - S230518h". LIGO. Retrieved 18 May 2023.
- XML file with preliminary information