Skorokhod integral

In mathematics, the Skorokhod integral, often denoted , is an operator of great importance in the theory of stochastic processes. It is named after the Ukrainian mathematician Anatoliy Skorokhod. Part of its importance is that it unifies several concepts:

Definition

Preliminaries: the Malliavin derivative

Consider a fixed probability space and a Hilbert space ; denotes expectation with respect to

Intuitively speaking, the Malliavin derivative of a random variable in is defined by expanding it in terms of Gaussian random variables that are parametrized by the elements of and differentiating the expansion formally; the Skorokhod integral is the adjoint operation to the Malliavin derivative.

Consider a family of -valued random variables , indexed by the elements of the Hilbert space . Assume further that each is a Gaussian (normal) random variable, that the map taking to is a linear map, and that the mean and covariance structure is given by

for all and in . It can be shown that, given , there always exists a probability space and a family of random variables with the above properties. The Malliavin derivative is essentially defined by formally setting the derivative of the random variable to be , and then extending this definition to "smooth enough" random variables. For a random variable of the form

where is smooth, the Malliavin derivative is defined using the earlier "formal definition" and the chain rule:

In other words, whereas was a real-valued random variable, its derivative is an -valued random variable, an element of the space . Of course, this procedure only defines for "smooth" random variables, but an approximation procedure can be employed to define for in a large subspace of ; the domain of is the closure of the smooth random variables in the seminorm :

This space is denoted by and is called the Watanabe–Sobolev space.

The Skorokhod integral

For simplicity, consider now just the case . The Skorokhod integral is defined to be the -adjoint of the Malliavin derivative . Just as was not defined on the whole of , is not defined on the whole of : the domain of consists of those processes in for which there exists a constant such that, for all in ,

The Skorokhod integral of a process in is a real-valued random variable in ; if lies in the domain of , then is defined by the relation that, for all ,

Just as the Malliavin derivative was first defined on simple, smooth random variables, the Skorokhod integral has a simple expression for "simple processes": if is given by

with smooth and in , then

Properties

  • The isometry property: for any process in that lies in the domain of ,
If is an adapted process, then for , so the second term on the right-hand side vanishes. The Skorokhod and Itô integrals coincide in that case, and the above equation becomes the Itô isometry.
  • The derivative of a Skorokhod integral is given by the formula
where stands for , the random variable that is the value of the process at "time" in .
  • The Skorokhod integral of the product of a random variable in and a process in is given by the formula

References

  • "Skorokhod integral", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Ocone, Daniel L. (1988). "A guide to the stochastic calculus of variations". Stochastic analysis and related topics (Silivri, 1986). Lecture Notes in Math. 1316. Berlin: Springer. pp. 1–79. MR953793
  • Sanz-Solé, Marta (2008). "Applications of Malliavin Calculus to Stochastic Partial Differential Equations (Lectures given at Imperial College London, 711 July 2008)" (PDF). Retrieved 2008-07-09.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.