Jakob Bernoulli

Jakob Bernoulli

Jacob Bernoulli.
Fecha de nacimientoEl 27 de diciembre de 1654
Lugar de nacimientoEn Basilea,Confederación Suiza
Fecha de fallecimientoEl 16 de agosto de 1705 (50 años)
Lugar de fallecimientoEn Basilea,Confederación Suiza
CampoTeoría de probabilidad, Cálculo diferencial, Teoría de números, Geometría
InstitucionesUniversidad de Basilea
Alma máterUniversidad de Basilea
Estudiantes
destacados
Johann Bernoulli, Jacob Hermann, Nicolaus I Bernoulli
Conocido porEcuación diferencial de Bernoulli, Polinomios de Bernoulli, Ensayo de Bernoulli, Ley de los grandes números, Lemniscata
Notas
Hermano de Johann Bernoulli

Jakob Bernoulli (Basilea, 27 de diciembre de 1654 - ibíd. 16 de agosto de 1705), también conocido como Jacob, Jacques o James Bernoulli, fue un destacado matemático y científico suizo; hermano mayor de Johann Bernoulli (miembro de la familia Bernoulli).[1]

Biografía

Siendo joven, su padre Nikolaus Bernoulli lo envió a la Universidad de Basilea para estudiar filosofía y teología, con el ánimo de que se convirtiera en teólogo. Pero Jakob continuó, a escondidas, las que eran sus auténticas aficiones: la física y las matemáticas.

A partir de los planteamientos de Leibniz desarrolló problemas de cálculo infinitesimal. Fundó en Basilea un colegio experimental. Estudió por sí mismo la forma del cálculo ideada por Leibniz. Desde 1687 hasta su muerte fue profesor de Matemáticas en Basilea. Jacob I fue uno de los primeros en desarrollar el cálculo más allá del estado en que lo dejaron Newton y Leibniz y en aplicarlo a nuevos problemas difíciles e importantes. Sus contribuciones a la geometría analítica, a la teoría de probabilidades y al cálculo de variaciones fueron de extraordinaria importancia. Tenemos ya una muestra del tipo del problema tratado por el cálculo de variaciones en el teorema de Fermat sobre el tiempo mínimo. La matemática del problema se reduce a hacer que una cierta integral tome un valor máximo sometido a una condición restrictiva. Jacob I resolvió este problema y lo generalizó. El hecho de que la cicloide es la curva de más rápido descenso fue descubierto por los hermanos Jacob I y Johannes I en 1697, y casi simultáneamente por varios autores Durante un viaje a Inglaterra en 1676, Jakob Bernoulli conoció a Robert Boyle y Robert Hooke. Este contacto le inspiró una dedicación vitalicia a la ciencia y la matemática. Fue nombrado Lector en la Universidad de Basilea en 1682 y fue nombrado Profesor de Matemáticas en 1687.

En 1690 se convirtió en la primera persona en desarrollar la técnica para resolver ecuaciones diferenciales separables.

Se familiarizó con el cálculo mediante su correspondencia con Gottfried Leibniz, y colaboró con su hermano Johann en varias aplicaciones, siendo notable la publicación de artículos en curvas trascendentales (1696) e isoperimetría (1700, 1701).

Su obra maestra fue Ars Conjectandi (el Arte de la conjetura), un trabajo pionero en la teoría de la probabilidad. La publicó su sobrino Nicholas en 1713, ocho años tras su muerte por tuberculosis. Los términos ensayo de Bernoulli y números de Bernoulli son resultado de su trabajo. También existe un cráter en la Luna bautizado cráter Bernoulli en honor suyo y de su hermano Johann.[1]

La espiral logarítmica

La espiral construida utilizando rectángulos con la proporción áurea resulta una aproximación a la espiral logarítmica, que Bernouilli deseó para su tumba, en lugar de la espiral de Arquímedes que finalmente fue erróneamente tallada.

Bernoulli escogió la figura de la espiral logarítmica (propuesta antes por su aprendiz Andres Beat E.S), así como el emblema en latín "Eadem mutata resurgo" (Mutante y permanente, vuelvo a resurgir siendo el mismo) para su epitafio. Contrariamente a su deseo de que fuese tallada una espiral logarítmica (constante en su radio), la espiral que tallaron los maestros canteros en su tumba fue una espiral de Arquímedes (constante en su diferencia). La espiral logarítmica se distingue de la espiral de Arquímedes por el hecho de que las distancias entre su brazos se incrementan en progresión geométrica, mientras que en una espiral de Arquímedes estas distancias son constantes.[2]

El término espiral logarítmica se debe a Pierre Varignon. La espiral logarítmica fue estudiada por Descartes y Torricelli, pero la persona que le dedicó un libro fue Jakob Bernoulli, que la llamó Spira mirabilis, «la espiral maravillosa». Impresionado por sus propiedades, pidió que grabaran en su tumba, en Basilea, la espiral logarítmica con la máxima eadem mutata resurgo, pero, en su lugar, el tallista grabó (por desconocimiento o para ahorrarse trabajo) una espiral de Arquímedes. D'Arcy Thompson le dedicó un capítulo de su tratado On Growth and Form (1917).

"Eadem mutata resurgo" y la espiral logarítmica son también el emblema del Colegio de Patafísica.

Jakob Bernoulli escribió que la espiral logarítmica puede ser utilizada como un símbolo, bien de fortaleza y constancia en la adversidad, o bien como símbolo del cuerpo humano, el cual, después de todos los cambios y mutaciones, incluso después de la muerte será restaurado a su ser perfecto y exacto. [3]

Citas

Epitafio de Jacob Bernoulli en el claustro de la Catedral de Basilea.
La ley de grandes números es una regla que incluso la persona más estúpida conoce mediante cierto instinto natural per se y sin instrucción previa.

Reconocimientos

Véase también

Referencias

  1. 1 2 «Jacob (Jacques) Bernoulli» (en en). MacTutor (St. Andrews University). Consultado el 16 de marzo de 2016.
  2. Weisstein, Eric W. "Logarithmic Spiral." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogarithmicSpiral.html
  3. Gutiérrez, S. (Febrero de 2006). Jakob Bernoulli: La geometría y el nuevo cálculo. Revista Suma, 89-92. Recuperado el 10 de diciembre de 2018, de https://revistasuma.es/IMG/pdf/51/089-092.pdf]]
  4. British Association for the Advancement of Science. Meeting. (2010). Report of the Annual Meeting, Volumen 29. Office of the British Association.
  5. «(2034) Bernoulli» (en inglés). Jet Propulsion Laboratory. Consultado el 20 de agosto de 2015.

Enlaces externos

This article is issued from Ecured. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.