Monoide

Monoide
Concepto:Estructura algebraica de un conjunto y una operación sobre éste que es cerrada y asociativa, además de que existe un neutro en el conjunto para la operación.

Monoide. En Álgebra dícese de la estructura algebraica conformada por el par <G,*>, tales que G es un conjunto no vacío y * es una operación binaria; entonces se cumple que * es cerrada y asociativa y que existe el elemento neutro en G para *.

En el caso que <G,*> sea monoide y la operación sea conmutativa se dice que es un monoide conmutativo o abeliano.

Definición

Sea un conjunto G y la operación binaria * definida como *(x,y)=z o mejor x*y=z y se satisfacen cada uno de los siguientes axiomas:

  1. Clausura: . * es cerrada.
  2. Asociatividad: Para todo x, y, z de G, (x*y)*z=x*(y*z).
  3. Existencia del neutro: Existe uno y solo un elemento e de G tal que para todo x de G se cumple que x*e=e*x=x. e es llamado neutro para * en G.

Se dice que G con la operación * es un monoide.

Ejemplos

  • Los enteros y la suma conforman un monoide pues la suma es cerrada y asociativa, el 0 es el neutro.
  • Los números naturales y el producto son también un monoide donde el 1 es el neutro de la multiplicación.
  • Las cadenas de caracteres y la concatenación forman un monoide teniendo a la cadena vacía por neutro.
  • Sea un grupo algebraico <M,*> cualquiera, también es un monoide.

Fuentes

  1. Carl B. Allendoerfer, Cletus O. Oakley. Introducción moderna a la matemática superior. Ediciones del Castillo, Madrid. 1967.
  2. Artículo: Monoide. Disponible en: "es.wikipedia.org". Consultado: 26 de enero de 2012.
This article is issued from Ecured. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.