Proporcionalidad
|
Proporcionalidad. Muchas veces en la práctica se nos presentan situaciones en las que el valor o cantidad de una magnitud depende del valor de otra. El factor constante de proporcionalidad puede utilizarse para expresar las relaciones entre las magnitudes.
Reseña histórica
Las matemáticas son el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
A finales del siglo V a.C., descubrieron que no existía una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, puesto que una de las dos cantidades es inconmensurable, es decir, no existen dos números naturales cuyo cociente sea igual a la proporción entre el lado y la diagonal. Pero como los griegos sólo utilizaban los números naturales, no pudieron expresar numéricamente dicho cociente, ya que es un número irracional.
Proporcionalidad directa
Dos magnitudes son directamente proporcionales cuando al aumentar una, aumenta la otra en la misma proporción.
Proporcionalidad inversa
La proporcionalidad inversa es una relación entre dos variables en las que el producto entre las cantidades que se corresponden es siempre el mismo.
O sea que: dos magnitudes son inversamente proporcionales cuando al aumentar una, disminuye la otra en la misma proporción.
Ejemplo
Si un automóvil se desplaza con cierta velocidad y la aumenta, el tiempo que demora en llegar a su destino disminuye. Si duplica velocidad, el tiempo que falta para llegar a su destino se reduce a la mitad.
También se puede apreciar esta relación entre el ancho y el largo de los rectángulos que tienen la misma área.
Si se dice que se trata de un área de 36 cm². Recordando que el área de un rectángulo es el producto del largo por el ancho.
En la siguiente tabla se puede ver, con algunos valores que:
Observa que:
Los valores del ancho se obtienen multiplicando 36 por los recíprocos de los valores respectivos del largo.
Aquí se aprecia nuevamente que, cuando el largo aumenta, el ancho disminuye.
Cuando dos magnitudes están relacionadas de modo que los valores de una de ellas se obtienen multiplicando por un mismo número los recíprocos de los valores correspondientes de la otra magnitud, se dice que son inversamente proporcionales.
La velocidad y el tiempo son inversamente proporcionales cuando la distancia a recorrer es la misma.
Igual sucede con el largo y ancho de los rectángulos de igual área.
El número por el que se multiplica cada recíproco se llama factor de proporcionalidad inversa.
Ejemplo:
Si un alumno necesita 12 días para desyerbar un campo de tomates , ¿cuántos días necesitarán 4 alumnos para realizar la misma labor?
Una vía es, hallar el valor correspondiente a 1, es decir, el factor de proporcionalidad.
Otra vía consiste en formar una proporción y calcular x. En ese caso x representa la cantidad de días que necesitan los 4 alumnos para realizar la labor.
Representando los datos en una tabla:
Se forma la proporción igualando la razón entre los valores de una magnitud con el recíproco de la razón entre sus valores correspondientes como indican las flechas.
Respuesta: 4 alumnos necesitarán 4 días para realizar la labor.
Existen casos de magnitudes que están relacionadas entre sí de modo que el valor de una depende del valor de la otra, sin embargo no existe proporcionalidad entre ellas, por ejemplo:
Véase también
Enlaces externos
- Ematematicas, disponible en www.ematematicas.net.
- Aplicaciones, disponible en www.aplicaciones.info.
- Problemas de proporcionalidad (matesfacil.com)
Fuentes
- Libro de texto de Matemática 6to grado. Editorial Pueblo y Educación, 1989.
- Artículo Concepto Fracción. Disponible en: www.profesorenlinea.cl. Consultada el 21 de abril de 2011.
- Proporciones matemáticas. Ejercicios. Disponible en todosloscomo.com. Consultada el 22 de abril de 2011.
- Portal: Matemática. Disponible en "lubrin.org". Consultada el 22 de abril de 2011.