Ocean temperature
The ocean temperature varies by depth, geographical location and season. Both the temperature and salinity of ocean water differs. Warm surface water is generally saltier than the cooler deep or polar waters;[1] in polar regions, the upper layers of ocean water are cold and fresh.[2] Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a very uniform temperature, around 0-3 °C.[3] The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F) while near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F). There is a continuous circulation of water in the oceans. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.[4][5] Warm surface currents cool as they move away from the tropics, and the water becomes denser and sinks. The cold water moves back towards the equator as a deep sea current, driven by changes in the temperature and density of the water, before eventually welling up again towards the surface.

Ocean temperature as a term is used either for the temperature in the ocean at any depth, or specifically for the ocean temperatures that are not near the surface (in which case it is synonymous with "deep ocean temperature").
It is clear that the oceans are warming as a result of climate change and this rate of warming is increasing.[6]: 9 [7] The upper ocean (above 700 m) is warming fastest, but the warming trend extends throughout the ocean. In 2022, the global ocean was the hottest ever recorded by humans.[8]
Definition and types
Sea surface temperature
Deep ocean temperature
The temperature further below the surface is called "ocean temperature" or "deep ocean temperature". Ocean temperatures (more than 20 metres below the surface) also vary by region and time, and they contribute to variations in ocean heat content and ocean stratification.[12] The increase of both ocean surface temperature and deeper ocean temperature is an important effect of climate change on oceans.[12]
Deep ocean water is the name for cold, salty water found deep below the surface of Earth's oceans. Deep ocean water makes up about 90% of the volume of the oceans. Deep ocean water has a very uniform temperature, around 0-3 °C, and a salinity of about 3.5% or 35 ppt (parts per thousand).[3]
Relevance
Ocean temperature and dissolved oxygen concentrations are two key parameters that influence the ocean's primary productivity, the oceanic carbon cycle, nutrient cycles, and marine ecosystems.[13] They work in conjunction with salinity and density to control a range of processes such as mixing versus stratification, ocean currents and the thermohaline circulation.
Measurements
Ocean temperature is measured by a variety of techniques.[14] Below the sea surface, general temperature measurements are accompanied by a reference to the specific depth of measurement, because of significant variation with depths, especially during the daytime when low wind speed and a lot of sunshine may lead to the formation of a warm layer at the ocean surface and strong vertical temperature gradients (a diurnal thermocline).[15]
The basic technique involves lowering a device termed CTD (the abbreviation stands for conductivity, temperature, and depth) which measures temperature and other parameters electronically.[16] It continuously sends the data up to the ship via a conducting cable. This device is usually mounted on a frame which includes water sampling bottles. Since the 2010s autonomous vehicles–gliders, mini-submersibles etc.–are increasingly available. They carry the same CTD sensors, but operate independently of a research ship.
The basic CTD system is used from both research ships (with the conducting cable) and on moorings gliders and even seals (for example Antarctic fur seals),[17] although in all these latter cases the data has to be sent back by telemetry rather than conducting cables.
Sea surface temperature measurements are confined to the near-surface layer.[18] They can be measured with thermometers or spectroscopically from satellites. Weather satellites have been available to determine this parameter since 1967, with the first global composites created during 1970.[19]
The Advanced Very High Resolution Radiometer (AVHRR) is "the most commonly used instrument to measure sea surface temperature from space".[14]: 90
Mercury thermometers
The measurement technique used on ships and buoys is usually with thermistors and mercury thermometers.[14]: 88 Mercury thermometers are widely used to measure the temperature of surface waters; in this case they can be placed in buckets dropped over the side of a ship. To measure deeper temperatures they are placed on Nansen bottles.[14]: 88
Argo program
Ocean warming


Trends
It is clear that the ocean is warming as a result of climate change, and this rate of warming is increasing.[24]: 9 The global ocean was the warmest it had ever been recorded by humans in 2022.[25] This is determined by the ocean heat content, which exceeded the previous 2021 maximum in 2022.[25] The steady rise in ocean temperatures is an unavoidable result of the Earth's energy imbalance, which is primarily caused by rising levels of greenhouse gases.[25] Between pre-industrial times and the 2011–2020 decade, the ocean's surface has heated between 0.68 and 1.01 °C.[26]: 1214
The upper ocean (above 700 m) is warming the fastest, but the warming trend is widespread. The majority of ocean heat gain occurs in the Southern Ocean. For example, between the 1950s and the 1980s, the temperature of the Antarctic Southern Ocean rose by 0.17 °C (0.31 °F), nearly twice the rate of the global ocean.[27]
The warming rate varies with depth: at a depth of a thousand metres the warming occurs at a rate of nearly 0.4 °C per century (data from 1981 to 2019), whereas warming occurs at only half that depth.[28]: 463Causes
The root cause of these observed changes is the Earth warming due to anthropogenic emissions of greenhouse gases, such as for example carbon dioxide and methane.[30] This leads inevitably to ocean warming, because the ocean is taking up most of the additional heat in the climate system.[7]
In other words: the climb in ocean temperatures is the inevitable outcome of Earth's energy imbalance, primarily associated with increasing concentrations of greenhouse gases.[8]
Increased stratification and lower oxygen levels
Warming of the ocean surface due to higher air temperatures leads to increased ocean temperature stratification: The decline in mixing of the ocean layers stabilises warm water near the surface while reducing cold, deep water circulation. The reduced up and down mixing reduces the ability of the ocean to absorb heat, directing a larger fraction of future warming toward the atmosphere and land. Energy available for tropical cyclones and other storms is expected to increase, nutrients for fish in the upper ocean layers are set to decrease, as is the capacity of the oceans to store carbon.
Warmer water cannot contain as much oxygen as cold water. As a result, the gas exchange equilibrium changes to reduce ocean oxygen levels and increase oxygen in the atmosphere. Increased thermal stratification may lead to reduced supply of oxygen from the surface waters to deeper waters, and therefore further decrease the water's oxygen content.[31] The ocean has already lost oxygen throughout the water column, and oxygen minimum zones are expanding worldwide.[32]: 471
Changing ocean currents
Ocean currents are caused by varying temperatures associated with sunlight and air temperatures at different latitudes, as well as by prevailing winds and the different densities of saline and fresh water. Air tends to be warmed and thus rise near the equator, then cool and thus sink slightly further poleward. Near the poles, cool air sinks, but is warmed and rises as it then travels along the surface equatorward. Driven by this sinking and the upwelling that occurs in lower latitudes, as well as the driving force of the winds on surface water, the ocean currents act to circulate water throughout the entire sea. When global warming is added into the equation, changes occur, especially in the regions where deep water is formed.[33]
In the geologic past
Temperature reconstructions based on oxygen and silicon isotopes from rock samples have predicted much hotter Precambrian sea temperatures.[34][35] These predictions suggest ocean temperatures of 55–85 °C during the period of 2,000 to 3,500 million years ago, followed by cooling to more mild temperatures of between 10 and 40 °C by 1,000 million years ago. Reconstructed proteins from Precambrian organisms have also provided evidence that the ancient world was much warmer than today.[36][37]
The Cambrian Explosion (approximately 538.8 million years ago) was a key event in the evolution of life on Earth. This event took place at a time when sea surface temperatures have been proposed to reach about 60 °C.[38] Such high temperatures are clearly above the upper thermal limit of 38 °C for modern marine invertebrates and preclude a major biological revolution.[39]
During the later portion of the Cretaceous, from 100 to 66 million years ago, average global temperatures reached their highest level during the last ~200 million years.[40] This is likely to be the result of a favorable configuration of the continents during this period that allowed for improved circulation in the oceans and discouraged the formation of large scale ice sheet.
Data from an oxygen isotope database indicates that seven global warming events happened during a number of geologic time periods, for example during the Late Cambrian, Early Triassic, Late Cretaceous, and Paleocene-Eocene transition. During these warming periods, the sea surface temperatures were about 5–30 °C higher than today.[13]
See also
- Ocean current § Causes, temperature as a contributing cause of ocean currents
- Global surface temperature, a planet-wide average of temperatures at both the sea surface and the air over land
- Ocean heat content § Recent observations and changes, temperature as involved in vertical heat distribution and transport
- Marine heatwave
- Upwelling
References
- "Ocean Stratification". The Climate System. Columbia Univ. Archived from the original on 29 March 2020. Retrieved 22 September 2015.
- "The Hidden Meltdown of Greenland". Nasa Science/Science News. NASA. Retrieved 23 September 2015.
- "Temperature of Ocean Water". UCAR. Archived from the original on 2010-03-27. Retrieved 2012-09-05.
- Rahmstorf, S (2003). "The concept of the thermohaline circulation" (PDF). Nature. 421 (6924): 699. Bibcode:2003Natur.421..699R. doi:10.1038/421699a. PMID 12610602. S2CID 4414604.
- Lappo, SS (1984). "On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean". Study of Ocean and Atmosphere Interaction Processes. Moscow Department of Gidrometeoizdat (in Mandarin): 125–9.
- IPCC, 2019: Summary for Policymakers Archived 2022-10-18 at the Wayback Machine. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Archived 2021-07-12 at the Wayback Machine [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157964.001.
- Cheng, Lijing; Abraham, John; Hausfather, Zeke; Trenberth, Kevin E. (2019). "How fast are the oceans warming?". Science. 363 (6423): 128–129. Bibcode:2019Sci...363..128C. doi:10.1126/science.aav7619. ISSN 0036-8075. PMID 30630919. S2CID 57825894.
- Cheng, Lijing; Abraham, John; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Mann, Michael E.; Zhu, Jiang; Wang, Fan; Locarnini, Ricardo; Li, Yuanlong; Zhang, Bin; Yu, Fujiang; Wan, Liying; Chen, Xingrong; Feng, Licheng (2023). "Another Year of Record Heat for the Oceans". Advances in Atmospheric Sciences: 1–12. doi:10.1007/s00376-023-2385-2. ISSN 0256-1530. PMC 9832248. PMID 36643611.
Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
- "Global Annual Mean Surface Air Temperature Change". NASA. Retrieved 23 February 2020.
- Mach, K.J.; Planton, S.; von Stechow, C., eds. (2014). "Annex II: Glossary" (PDF). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Report). Geneva, Switzerland: IPCC. p. 124.
- McCarthy, Gerard D.; Haigh, Ivan D.; Hirschi, Joël J.-M.; Grist, Jeremy P.; Smeed, David A. (2015-05-28). "Ocean impact on decadal Atlantic climate variability revealed by sea-level observations" (PDF). Nature. 521 (7553): 508–510. Bibcode:2015Natur.521..508M. doi:10.1038/nature14491. ISSN 1476-4687. PMID 26017453. S2CID 4399436.
- Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change Archived 2022-10-24 at the Wayback Machine. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2021-08-09 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
- Song, Haijun; Wignall, Paul B.; Song, Huyue; Dai, Xu; Chu, Daoliang (2019). "Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years". Journal of Earth Science. 30 (2): 236–243. doi:10.1007/s12583-018-1002-2. ISSN 1674-487X. S2CID 146378272.
- "Introduction to Physical Oceanography". Open Textbook Library. 2008. Retrieved 2022-11-14.
- Vittorio Barale (2010). Oceanography from Space: Revisited. Springer. p. 263. ISBN 978-90-481-8680-8.
- "Conductivity, Temperature, Depth (CTD) Sensors - Woods Hole Oceanographic Institution". www.whoi.edu/. Retrieved 2023-03-06.
- Boyd, I.L; Hawker, E.J; Brandon, M.A; Staniland, I.J (2001). "Measurement of ocean temperatures using instruments carried by Antarctic fur seals". Journal of Marine Systems. 27 (4): 277–288. doi:10.1016/S0924-7963(00)00073-7.
- Alexander Soloviev; Roger Lukas (2006). The near-surface layer of the ocean: structure, dynamics and applications. The Near-Surface Layer of the Ocean: Structure. シュプリンガー・ジャパン株式会社. p. xi. Bibcode:2006nslo.book.....S. ISBN 978-1-4020-4052-8.
- P. Krishna Rao; W. L. Smith; R. Koffler (January 1972). "Global Sea-Surface Temperature Distribution Determined From an Environmental Satellite". Monthly Weather Review. 100 (1): 10–14. Bibcode:1972MWRv..100...10K. doi:10.1175/1520-0493(1972)100<0010:GSTDDF>2.3.CO;2.
- Argo Begins Systematic Global Probing of the Upper Oceans Toni Feder, Phys. Today 53, 50 (2000), Archived 11 July 2007 at the Wayback Machine doi:10.1063/1.1292477
- Richard Stenger (19 September 2000). "Flotilla of sensors to monitor world's oceans". CNN. Archived from the original on 6 November 2007.
- Cheng, Lijing; Abraham, John; Zhu, Jiang; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Locarnini, Ricardo; Zhang, Bin; Yu, Fujiang; Wan, Liying; Chen, Xingrong; Song, Xiangzhou; Liu, Yulong; Mann, Michael E. (2020). "Record-Setting Ocean Warmth Continued in 2019". Advances in Atmospheric Sciences. 37 (2): 137–142. Bibcode:2020AdAtS..37..137C. doi:10.1007/s00376-020-9283-7. ISSN 1861-9533. S2CID 210157933.
- Lindsey, Rebecca; Dahlman, Luann (17 August 2020). "Climate Change: Ocean Heat Content". climate.gov. National Oceanographic and Atmospheric Administration (NOAA). Archived from the original on 25 February 2023. Embedded data link downloads data that is more current than 2020 publication date of article.
- "Summary for Policymakers". The Ocean and Cryosphere in a Changing Climate (PDF). 2019. pp. 3–36. doi:10.1017/9781009157964.001. ISBN 978-1-00-915796-4. Archived (PDF) from the original on 2023-03-29. Retrieved 2023-03-26.
- Cheng, Lijing; Abraham, John; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Mann, Michael E.; Zhu, Jiang; Wang, Fan; Locarnini, Ricardo; Li, Yuanlong; Zhang, Bin; Yu, Fujiang; Wan, Liying; Chen, Xingrong; Feng, Licheng (2023). "Another Year of Record Heat for the Oceans". Advances in Atmospheric Sciences: 1–12. doi:10.1007/s00376-023-2385-2. ISSN 0256-1530. PMC 9832248. PMID 36643611. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
- Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change Archived 2022-10-24 at the Wayback Machine. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2021-08-09 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362
- Gille, Sarah T. (2002-02-15). "Warming of the Southern Ocean Since the 1950s". Science. 295 (5558): 1275–1277. Bibcode:2002Sci...295.1275G. doi:10.1126/science.1065863. PMID 11847337. S2CID 31434936.
- Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O'Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities Archived 2019-12-20 at the Wayback Machine. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Archived 2021-07-12 at the Wayback Machine [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
- Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, New York, USA, pages 1211–1362, doi:10.1017/9781009157896.011.
- Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (2020-10-17). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019. ISSN 1543-5938.
Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
- Chester, R.; Jickells, Tim (2012). "Chapter 9: Nutrients oxygen organic carbon and the carbon cycle in seawater". Marine geochemistry (3rd ed.). Chichester, West Sussex, UK: Wiley/Blackwell. ISBN 978-1-118-34909-0. OCLC 781078031.
- Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O'Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities Archived 2019-12-20 at the Wayback Machine. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Archived 2021-07-12 at the Wayback Machine [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
- Trenberth, K; Caron, J (2001). "Estimates of Meridional Atmosphere and Ocean Heat Transports". Journal of Climate. 14 (16): 3433–43. Bibcode:2001JCli...14.3433T. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.
- Knauth, L. Paul (2005). "Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution". Palaeogeography, Palaeoclimatology, Palaeoecology. 219 (1–2): 53–69. Bibcode:2005PPP...219...53K. doi:10.1016/j.palaeo.2004.10.014.
- Shields, Graham A.; Kasting, James F. (2006). "A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts". Nature. 443 (7114): 969–972. Bibcode:2006Natur.443..969R. doi:10.1038/nature05239. PMID 17066030. S2CID 4417157.
- Gaucher, EA; Govindarajan, S; Ganesh, OK (2008). "Palaeotemperature trend for Precambrian life inferred from resurrected proteins". Nature. 451 (7179): 704–707. Bibcode:2008Natur.451..704G. doi:10.1038/nature06510. PMID 18256669. S2CID 4311053.
- Risso, VA; Gavira, JA; Mejia-Carmona, DF (2013). "Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian b-lactamases". J Am Chem Soc. 135 (8): 2899–2902. doi:10.1021/ja311630a. hdl:11336/22624. PMID 23394108.
- Wotte, Thomas; Skovsted, Christian B.; Whitehouse, Martin J.; Kouchinsky, Artem (2019). "Isotopic evidence for temperate oceans during the Cambrian Explosion". Scientific Reports. 9 (1): 6330. Bibcode:2019NatSR...9.6330W. doi:10.1038/s41598-019-42719-4. ISSN 2045-2322. PMC 6474879. PMID 31004083.
Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine
- Wotte, Thomas; Skovsted, Christian B.; Whitehouse, Martin J.; Kouchinsky, Artem (2019). "Isotopic evidence for temperate oceans during the Cambrian Explosion". Scientific Reports. 9 (1): 6330. Bibcode:2019NatSR...9.6330W. doi:10.1038/s41598-019-42719-4. ISSN 2045-2322. PMC 6474879. PMID 31004083.
- Renne, Paul R.; Deino, Alan L.; Hilgen, Frederik J.; Kuiper, Klaudia F.; Mark, Darren F.; Mitchell, William S.; Morgan, Leah E.; Mundil, Roland; Smit, Jan (7 February 2013). "Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary". Science. 339 (6120): 684–687. Bibcode:2013Sci...339..684R. doi:10.1126/science.1230492. PMID 23393261. S2CID 6112274.