2023 in paleobotany

This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.

List of years in paleobotany
In paleontology
2020
2021
2022
2023
2024
2025
2026
In arthropod paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoentomology
2020
2021
2022
2023
2024
2025
2026
In paleomalacology
2020
2021
2022
2023
2024
2025
2026
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026
In mammal paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoichthyology
2020
2021
2022
2023
2024
2025
2026

Algae

Chlorophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acicularia guizhouensis[1]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Archaeochaeta[2]

Gen. et sp. nov

Valid

Maloney et al.

Tonian

Dolores Creek Formation

 Canada
( Yukon)

The type species is A. guncho.

Kantia granieri[1]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Kantia intusannulata[1]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Kantia muxinanii[1]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Palaeoulvaria[3]

Gen. et sp. nov

Valid

Kolosov

Ediacaran

Byuk Formation

 Russia

A green alga belonging to the group Ulvales. The type species is P. plate.

Sphaeroplea striatocristata[4]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A species of Sphaeroplea.

Voronocladus[5]

Gen. et sp. nov

In press

Skompski et al.

Silurian

 Ukraine

A green alga belonging to the group Dasycladales and the family Triploporellaceae. Genus includes new species V. dryganti.

Phycological research

  • Yang et al. (2023) reinterpret Protomelission as an early dasycladalean green alga.[6]

Lycopodiopsida

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Thomasites[7]

Gen. et sp. et comb. nov

Bek et al.

Carboniferous

 Czech Republic
 Germany

A herbaceous lycophyte.
Genus includes new species T. serratus, as well as Lycopodites elongatus Goldenberg (1855).

Ferns and fern allies

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Botryopteridium sinensis[8]

Sp. nov

Zhou et al.

Permian

 China

A botryopterid fern.

Diplazites campbellii[9]

Sp. nov

Pšenička et al.

Carboniferous (Kasimovian)

 Canada
( Nova Scotia)

A marattialean fern belonging to the family Psaroniaceae.

Equisetum kekeense[10]

Sp. nov

Zhang & Xie in Cao et al.

Miocene

Youshashan Formation

 China

A species of Equisetum.

Equisetum siwalikum[11]

Sp. nov

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A species of Equisetum.

Equisetum wulanense[10]

Sp. nov

Zhang & Xie in Cao et al.

Miocene

Youshashan Formation

 China

A species of Equisetum.

Prosperifilix[12]

Gen. et sp. nov

In press

Wang, Shi & Engel in et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Dryopteridaceae. The type species is P. sepeliogladius.

Pteridological research

  • Blanco-Moreno & Buscalioni (2023) identify Sphenopteris wonnacottii as a junior synonym of Coniopteris laciniata, provide whole plant reconstruction of C. laciniata, and interpret the variability of the pinnules of C. laciniata as likely caused by the submersion of the apical part of fronds in water during their development.[13]

Ginkgophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Karkenia archangelskiana[14]

Sp. nov

Nosova in Nosova, Kostina & Afonin

Early Cretaceous (Aptian–Albian)

Khuren Dukh Formation

 Mongolia

A member of the family Karkeniaceae.

Sphenobaiera krassilovii[14]

Sp. nov

Nosova, Kostina & Afonin

Early Cretaceous (Aptian–Albian)

Khuren Dukh Formation

 Mongolia

Conifers

Cheirolepidiaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Pararaucaria laiyangensis[15]

Sp. nov

Jin et al.

Early Cretaceous

Laiyang Formation

 China

Pseudofrenelopsis dinisii[16]

Sp. nov

Mendes, Kvaček & Doyle

Early Cretaceous (probably Hauterivian)

Santa Susana Formation

 Portugal

Pinaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Pinus bukatkinii[17]

Sp. nov

Valid

Bazhenova et al.

Middle Jurassic

 Russia
( Belgorod Oblast)

A pine.

Tsuga weichangensis[18]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Tsuga.

Flowering plants

Alismatales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Appianospadix[19]

Gen. et sp. nov

In press

Stockey et al.

Eocene

 Canada
( British Columbia)

A member of the family Araceae. The type species is A. bogneri

Basal eudicot research

  • Evidence from the palynomorph fossil record, interpreted as indicating that members of the family Proteaceae reached South African Cape in the Late Cretaceous from North-Central Africa rather than from Australia across the Indian Ocean, is presented by Lamont, He & Cowling (2023).[20]

Ericales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Symplocos kowalewskii[21]

Comb nov

Valid

(Casp.) Sadowski & Hofmann

Eocene
Priabonian

Baltic Amber

 Europe

A Symplocaceous flower species.
Moved from Stewartia kowalewskii (1886).

Solanales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Eophysaloides[22]

Gen. et sp. nov

Deanna et al.

Eocene

Esmeraldas Formation

 Colombia

A member of the family Solanaceae. The type species is E. inflata.

Lycianthoides[22]

Gen. et sp. nov

Deanna et al.

Eocene

Green River Formation

 United States
( Colorado)

A member of the family Solanaceae. The type species is L. calycina.

Cucurbitales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Parvaspicula[23]

Gen. et comb. nov

Valid

Correa Narvaez et al.

Eocene
Ypresian

Green River Formation

 United States
( Colorado)

A tetramelaceous leaf morphotype
The type species is Clethra (?) lepidioides Cockerell (1925)[24][25]

Punctaphyllum[23]

Gen. et comb. nov

Valid

Correa Narvaez et al.

Eocene
Ypresian

Green River Formation

 United States
( Colorado)

A tetramelaceous seed morphotype
The type species is Cucurbita glandulosa Brown (1929)[26][25]

Fabales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Englerodendron mulugetanum[27]

Sp. nov

Valid

Pan et al.

Miocene

 Ethiopia

A species of Englerodendron.

Fagales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Engelhardia guipingensis[28]

Sp. nov

Song & Jin in Song et al.

Miocene

Erzitang Formation

 China

A species of Engelhardia.

Gymnostoma stuartii[29]

Sp. nov

Whang, Hill & Hill

Neogene

 Australia

A species of Gymnostoma.

Malpighiales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Elatine odgaardii[30]

Sp. nov

Valid

Bennike in Bennike et al.

Probably early Pleistocene

 Greenland

A species of Elatine. Announced in 2022; the final article version was published in 2023.

Macaranga kirkjohnsonii[31]

Sp. nov

Wilf, Iglesias & Gandolfo

Eocene (Ypresian)

Huitrera Formation

 Argentina

A species of Macaranga.

Passiflora sulcatasperma[32]

Sp. nov

Hermsen

Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Passiflora.

Tineafructus[31]

Gen. et sp. nov

Wilf, Iglesias & Gandolfo

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the family Euphorbiaceae belonging to the subfamily Acalyphoideae and the tribe Acalypheae. The type species is T. casamiquelae.

Malvales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Bombax asiatica[33]

Sp. nov

Valid

Hazra, Bera & Khan

Pliocene

 India

A species of Bombax.

Myrtales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Conocarpoxylon[34]

Gen. et sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae. Genus includes new species C. cristalliferum.

Terminalioxylon paravirens[34]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae.

Terminalioxylon ushun[34]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae.

Trapa haominiae[35]

Sp. nov

Wu et al.

Miocene

Fotan Group

 China

A species of Trapa.

Rosales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ficus paleoauriculata[36]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Ficus paleodicranostyla[36]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Ficus paleovariegata[36]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Gouianiaites[37]

Gen. et sp. nov

Valid

Centeno-González, Porras-Múzquiz & Estrada-Ruiz

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Rhamnaceae. Genus includes new species G. muzquizensis.

Helicostyloxylon[38]

Gen. et sp. nov

Valid

Martinez Martinez

Miocene

Ituzaingó Formation

 Argentina

A member of the family Moraceae. Genus includes new species H. paranensis.

Kageneckia coloradensis[39]

Comb. nov

(Knowlton) Denk et al.

Latest Eocene

Florissant Formation

 United States
( Colorado)

A species of Kageneckia.
Moved from Myrica coloradensis Knowlton (1916).

Ulmus palaeoparvifolia[40]

Sp. nov

Lu et al.

Miocene

Xiaolongtan Formation

 China

An elm.

Vauquelinia aculeata[39]

Comb. nov

(Saporta) Denk et al.

Oligocene (Chattian)

 France

A species of Vauquelinia.
Moved from Banksites aculeatus Saporta (1862).

Vauquelinia obscura[39]

Comb. nov

(Saporta) Denk et al.

Oligocene (Chattian) and early Miocene

 France

A species of Vauquelinia.
Moved from Banksites obscurus Saporta (1863).

Vauquelinia serra[39]

Comb. nov

(Unger) Denk et al.

Oligocene and early Miocene

 Austria

A species of Vauquelinia.
Moved from Quercus serra Unger (1847).

Sapindales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Canarium leenhoutsii[41]

Sp. nov

In press

Beurel et al.

Miocene

Zhangpu amber

 China

A species of Canarium.

Canarium wangboi[41]

Sp. nov

In press

Beurel et al.

Miocene

Zhangpu amber

 China

A species of Canarium.

Cyrtocarpa biapertura[42]

Sp. nov

Valid

Del Rio et al.

Paleocene and Eocene

 France

A species of Cyrtocarpa.

Swietenia palaeomahagoni[43]

Sp. nov

Valid

Chandra et al.

Paleogene

 India

A species of Swietenia.

Other superrosids

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Friisifructus[44]

Gen. et sp. nov

Valid

Tang, Smith & Atkinson

Late Cretaceous
(Campanian)

Cedar District Formation

 United States
 Washington

Rosid clade fruits of uncertain affinities.
The type species is F. aligeri.

Other angiosperms

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Racheliflora[45]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Potomac Group

 United States
( Virginia)

An early angiosperm of uncertain phylogenetic placement, most closely related to magnoliids, possibly with lauralean affinities.
The type species is R. virginiensis.

Xilinia[46]

Gen. et sp. nov

Wang et al.

Early Cretaceous (Albian)

Shengli Formation

 China

An early angiosperm of uncertain affinities.
The type species is X. shengliensis.

  • A study on the affinities of Santaniella, based on data from new fossil material from the Lower Cretaceous Crato Formation (Brazil), is published by Pessoa et al. (2023), who don't support the interpretation of Santaniella as a ranuculid, and consider it to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[47]

Angiosperm research

  • A study aiming to determine the affinities of 24 exceptionally preserved fossil flowers is published by López-Martínez et al. (2023).[48]

Other plants

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Daohugoucladus[49]

Gen. et sp. nov

Yang et al.

Middle Jurassic

Daohugou Beds

 China

A member of the family Gnetidae. The type species is D. sinensis.

Florinanthus longiantheratus[50]

Sp. nov

Bureš et al.

Carboniferous (Moscovian)

Plzeň Basin

 Czech Republic

Pollen-bearing organs of a member of Cordaitales.

Nebuloxyla[51]

Gen. et sp. nov

Lalica & Tomescu

Devonian (Emsian)

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species N. mikmaqiana.

Paradoxa[52]

Gen. et sp. nov

Liu, Shen & Wang

Middle Jurassic (Callovian)

Jiulongshan Formation

 China

A gymnosperm with several morphological features formerly restricted to angiosperms. The type species is P. huangii.

Parnaiboxylon wangi[53]

Sp. nov

Wang et al.

Carboniferous (Moscovian)

Benxi Formation

 China

A gymnospermous stem.

Qingganninginfructus[54]

Gen. et sp. nov

Wang & Sun in Han et al.

Middle Jurassic

Yaojie Formation

 China

Possibly an early angiosperm. The type species is Q. formosa.

Rhaphidopteris zhouii[55]

Sp. nov

In press

Yang

Early Jurassic

Sangonghe Formation

 China

A gymnosperm.

Skyttegaardia nagalingumiae[56]

Sp. nov

Elgorriaga & Atkinson

Late Cretaceous (Campanian)

Holz Shale

 United States
( California)

A member of Cycadales belonging to the family Zamiaceae.

Other plant research

  • Decombeix et al. (2023) document tyloses in Late Devonian Callixylon wood.[57]
  • A study on the anatomy and affinities of Tingia unita, based on data from specimens from the Permian Taiyuan Formation (China), is published by Yang, Wang & Wang (2023), who confirm that T. unita was a progymnosperm belonging to the group Noeggerathiales.[58]
  • Fu et al. (2023) report the presence of ovules enclosed within the ovaries of specimens of Nanjinganthus dendrostyla, and consider their findings to be consistent with the interpretation of Nanjinganthus as an Early Jurassic angiosperm.[59]

Palynology

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acylomurus silviae[4]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A spore of uncertain affinities.

Casuarinidites foveolatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Clavatriporites[60]

Gen. et 2 sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant. Genus includes new species C. dispersiclavatus and C. spicatus.

Echitricolpites serratus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Henrisporites qujingensis[61]

Sp. nov

Sui, McLoughlin & Feng in Sui et al.

Permian (Lopingian)

Xuanwei Formation

 China

A lycopsid megaspore.

Henrisporites yunnanensis[61]

Sp. nov

Sui, McLoughlin & Feng in Sui et al.

Permian (Lopingian)

Xuanwei Formation

 China

A lycopsid megaspore.

Inaperturopollenites fossulatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Longapertites crassireticuloides[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Luminidites microreticulatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Lusatisporis choiols[4]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A spore of uncertain affinities.

Psilabrevitricolporites porolatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Psilatriletes brevilaesuratus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

A spore.

Punctatisporites interfoveolatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

A spore.

Retimonoporites heterobrochatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Retitrescolpites miriabilis[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Retitriporites irregularis[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Rugutricolporites cumulus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Slavicekia[62]

Gen. et sp. nov

Valid

Heřmanová et al.

Late Cretaceous

 Czech Republic

Pollen from the Normapolles complex, likely produced by angiosperms belonging to the order Fagales. Genus includes new species S. inaequalis.

Syncolporites angusticolpatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Syncolporites rostro[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tetracolporopollenites torus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Thomasospora[7]

Gen. et comb. nov

Bek et al.

Paleozoic

 France

Spores produced by the lycophyte Thomasites serratus. Genus includes "Lycospora" gigantea Alpern.

Tricolpites brevicolpatus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tricolpites multiornamentus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tricolporites densus[60]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Palynological research

  • Malaikanok et al. (2023) describe fossil pollen grains of members of the family Fagaceae from the Oligocene to Miocene Ban Pa Kha Subbasin of the Li Basin (Thailand), and interpret the studied fossils as indicating that, contrary to previous interpretations of the palynological record, tropical Fagaceae-dominated forests existed in northern Thailand at least since the late Paleogene and persisted into the modern vegetation of Thailand.[63]

Research

  • Evidence from mercury concentration and isotopic signatures of marine sedimentary rock samples spanning from the Cambrian to Permian, interpreted as indicating that vascular plants were already widely distributed on land during the Ordovician-Silurian transition, is presented by Yuan et al. (2023).[64]
  • Evidence indicating that the knowledge of the early plant diversity from the latest Silurian–Early Devonian fossil record is at least partly affected by the variation of the rock record is presented by Capel et al. (2023).[65]
  • A study on early land plant diversity patterns across known paleogeographical units (Laurussia, Siberia, Kazakhstania, Gondwana) throughout the Silurian and Devonian periods is published by Capel et al. (2023)[66]
  • A study on the survivorship and migration dynamics of plants from the paleocontinent Angarida during the Frasnian-Tournaisian internal, as indicated by fossil record from the Siberian platform (Russia), is published by Dowding, Akulov & Mashchuk (2023).[67]
  • Barrón et al. (2023) study the floral assemblages from the Cretaceous Maestrazgo Basin (Spain), providing evidence of the existence of conifer woodlands and fern/angiosperm communities thriving in the mid‐Cretaceous Iberian Desert System, and report that the studied assemblages can generally be related to others from Europe and North America, but also included plants that were typical for northern Gondwana.[68]
  • A study on the fossil material of plants from the Cenomanian deposits of the Western Desert (Egypt) is published by El Atfy et al. (2023), who report the presence of five main vegetation types, and interpret the studied fossils as indicative of an overall warm and humid climate, punctuated by repeated phases of drier conditions.[69]
  • A study on the mid-Eocene vegetation in the southern Central Andes, based on spore-pollen record from the Casa Grande Formation (Jujuy, Argentina), is published by Tapia et al. (2023), who interpret their findings as indicative of a plant community with no close analogue in the modern South American vegetation, as well as indicative of subtropical or tropical conditions and frost-free winters.[70]
  • Description of fossil wood from the Brown Sands and Flat Sands localities in the Pliocene Usno Formation (Lower Omo valley, Ethiopia) is published by Jolly-Saad & Bonnefille (2023), who report that the studied assemblages strongly differ from other Miocene and Pliocene wood assemblages from Ethiopia, and interpret them as indicative of a seasonal climate and more humid climatic conditions compared to the present, but also as indicative of instability of climatic and environmental conditions, with significant changes in the composition of the tree cover during the time of existence of Australopithecus afarensis.[71]
  • A study on changes in functional diversity of plants from southeast Australia during the last 12,000 years, inferred from long-term pollen records, is published by Adeleye et al. (2023).[72]
  • The oldest flower and seed fossils of the wind-pollinated besom heaths, Erica sect. Chlorocodon, were found in Madeira Island within a 1.3 million-year-old fossil deposit.[73]

References

  1. Bucur, I. I.; Enos, P.; Minzoni, M. (2023). "Middle Triassic calcareous algae and microproblematica from south China". Micropaleontology. 69 (1): 61–102. doi:10.47894/mpal.69.1.02. S2CID 255664327.
  2. Maloney, K. M.; Maverick, D. P.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2023). "Systematic paleontology of macroalgal fossils from the Tonian Mackenzie Mountains Supergroup". Journal of Paleontology. 97 (2): 499–515. doi:10.1017/jpa.2023.4. S2CID 257295582.
  3. Kolosov, P. N. (2023). "Palaeoulvaria green algae of the Vendian (Ediacaran) Berezovsky Trough (south of the Siberian Platform)". Paleontological Journal. 57 (2): 231–234. doi:10.1134/S0031030123020090.
  4. Perez Loinaze, V. S.; Vera, E. I.; Moyano-Paz, D.; Coronel, M. D.; Manabe, M.; Tsuihiji, T.; Novas, F. E. (2023). "Maastrichtian palynological assemblages from the Chorrillo Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology. 314. 104893. doi:10.1016/j.revpalbo.2023.104893. S2CID 258043990.
  5. Skompski, S.; Kozłowska, A.; Kozłowski, W.; Łuczyński, P. (2023). "Coexistence of algae and a graptolite-like problematicum: a case study from the late Silurian of Podolia (Ukraine)". Acta Geologica Polonica. doi:10.24425/agp.2022.143599.
  6. Yang, J.; Lan, T.; Zhang, X.; Smith, M. R. (2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature. 615 (7952): 468–471. doi:10.1038/s41586-023-05775-5. PMID 36890226. S2CID 257425218.
  7. Bek, J.; Pšenička, J.; Drábková, J.; Zhou, W.-M.; Wang, J. (2023). "Thomasites gen. nov. a new herbaceous lycophyte and its spores from late Duckmantian of the Radnice Basin, Czech Republic and palynological grouping of Palaeozoic herbaceous lycophytes". Review of Palaeobotany and Palynology. 310. 104842. doi:10.1016/j.revpalbo.2023.104842. S2CID 255799382.
  8. Zhou, W.; Pšenička, J.; Bek, J.; Libertín, M.; Wang, S.; Wang, J. (2023). "A new species of Botryopteridium Doweld from the early Permian Wuda Tuff Flora and its evolutionary significance". Review of Palaeobotany and Palynology. 311. 104849. doi:10.1016/j.revpalbo.2023.104849. S2CID 256151569.
  9. Pšenička, J.; Votočková Frojdová, J.; Bek, J.; Zodrow, E. L.; Zhou, W.-M.; Wang, J.; Li, D.-D.; Feng, Z.; Guo, Y.; Zhou, Y. (2023). "A new marattialean fern Diplazites campbellii sp. nov. and its in situ spores from the Pennsylvanian of the Sydney Coalfield, Nova Scotia, Canada". Review of Palaeobotany and Palynology. 312. 104850. doi:10.1016/j.revpalbo.2023.104850. S2CID 256125643.
  10. Cao, Z.-D.; Zhang, P.; Zhang, S.-H.; Yang, Y.-H.; Chen, J.-Y.; Liu, L.-M.; Li, X.-C.; Xie, S.-P. (2023). "Miocene Equisetum tubers from the Wulan Basin, Northeast Qinghai-Tibetan Plateau and their paleoecological significance". Palaeoworld. doi:10.1016/j.palwor.2022.12.012. S2CID 255658320.
  11. Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Khan, M. A. (2023). "Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic". Plant Diversity. doi:10.1016/j.pld.2023.01.004. S2CID 255896301.
  12. Long, X.; Peng, Y.; Feng, Q.; Engel, M. S.; Shi, C.; Wang, S. (2023). "A new fossil fern of the Dryopteridaceae (Polypodiales) from the mid-Cretaceous Kachin amber". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-023-00572-4. S2CID 257253460.
  13. Blanco-Moreno, C.; Buscalioni, Á. D. (2023). "Revision of the Barremian fern Coniopteris laciniata from Las Hoyas and El Montsec (Spain): Highlighting its importance in the evolution of vegetation during the Early Cretaceous". Taxon. doi:10.1002/tax.12888. S2CID 258044454.
  14. Nosova, N.; Kostina, E.; Afonin, M. (2023). "Ovule-bearing structures of Karkenia Archangelsky and associated leaves of Sphenobaiera Florin from the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology. 104907. doi:10.1016/j.revpalbo.2023.104907.
  15. Jin, P.; Zhang, M.; Du, B.; Li, A.; Sun, B. (2023). "A new species of Pararaucaria from the Lower Cretaceous of Shandong province (Eastern China): Insights into the Evolution of the Cheirolepidiaceae cone". Cretaceous Research. 146. 105475. doi:10.1016/j.cretres.2023.105475. S2CID 256537440.
  16. Mendes, M. M.; Kvaček, J.; Doyle, J. A. (2023). "Pseudofrenelopsis dinisii, a new species of the extinct conifer family Cheirolepidiaceae from the probable lower Hauterivian (Cretaceous) of western Portugal". Review of Palaeobotany and Palynology. 104905. doi:10.1016/j.revpalbo.2023.104905.
  17. Bazhenova, N. V.; Bazhenov, A. V.; Tekleva, M. V.; Resvyi, A. S. (2023). "New representative of Pinus L. from Jurassic deposits of Belgorod Region, Russia". Paleontological Journal. 57 (1): 102–119. doi:10.1134/S0031030123010033.
  18. Li, Y.; Gee, C. T.; Tan, Z.-Z.; Zhu, Y.-B.; Yi, T.-M.; Li, C.-S. (2023). "Exceptionally well-preserved seed cones of a new fossil species of hemlock, Tsuga weichangensis sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China". Journal of Systematics and Evolution: jse.12952. doi:10.1111/jse.12952. S2CID 257368511.
  19. Stockey, R. A.; Rothwell, G. W.; Beard, G.; Gemmell, J. (2023). "Refining Our Understanding of Late Cretaceous-Paleogene Evolution within the Monocot Family Araceae: Appianospadix bogneri gen. et sp. nov". International Journal of Plant Sciences. doi:10.1086/725163. S2CID 257860852.
  20. Lamont, B. B.; He, T.; Cowling, R. M. (2023). "Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic". Annals of Botany. doi:10.1093/aob/mcad055. PMID 37076271.
  21. Sadowski, E.-M.; Hofmann, C.-C. (2023). "The largest amber-preserved flower revisited". Scientific Reports. 13 (1). 17. Bibcode:2023NatSR..13...17S. doi:10.1038/s41598-022-24549-z. PMC 9837116. PMID 36635320.
  22. Deanna, R.; Martínez, C.; Manchester, S.; Wilf, P.; Campos, A.; Knapp, S.; Chiarini, F. E.; Barboza, G. E.; Bernardello, G.; Sauquet, H.; Dean, E.; Orejuela, A.; Smith, S. D. (2023). "Fossil berries reveal global radiation of the nightshade family by the early Cenozoic". New Phytologist. doi:10.1111/nph.18904. PMID 36960534. S2CID 257715632.
  23. Correa Narvaez, J. E.; Allen, S. E.; Huegele, I. B.; Manchester, S. R. (2023). "Fossil leaves and fruits of Tetramelaceae (Curcurbitales) from the Eocene of the Rocky Mountain region, USA, and their biogeographic significance". International Journal of Plant Sciences. 184 (3): 177–200. doi:10.1086/724018. S2CID 256185427.
  24. Cockerell, T.D.A. (1925). "Plant and insect fossils from the Green River Eocene of Colorado". Proceedings of the U.S. National Museum. 66 (19): 1–13. doi:10.5479/si.00963801.66-2556.1.
  25. LaMotte, R.S. (1952). Catalogue of the Cenozoic plants of North America through 1950. Geological Society of America Memoirs. Vol. 51. Geological Society of America. doi:10.1130/MEM51.
  26. Brown, R. W. (1929). "Additions to the flora of the Green River formation". U.S. Geological Survey Professional Paper. 154: 279–292. doi:10.3133/pp154J.
  27. Pan, A. D.; Jacobs, B. F.; Bush, R. T.; de la Estrella, M.; Grímsson, F.; Herendeen, P. S.; van der Burgt, X. M.; Currano, E. D. (2023). "First evidence of a monodominant (Englerodendron, Amherstieae, Detarioideae, Leguminosae) tropical moist forest from the early Miocene (21.73 Ma) of Ethiopia". PLOS ONE. 18 (1). e0279491. doi:10.1371/journal.pone.0279491. PMC 9833558. PMID 36630378.
  28. Song, H.; Huang, L.; Xiang, H.; Quan, C.; Jin, J. (2023). "First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation". iScience. 106867. doi:10.1016/j.isci.2023.106867.
  29. Whang, S. S.; Hill, K. E.; Hill, R. S. (2023). "A new species of Gymnostoma (Casuarinaceae) present during the Neogene aridification of Southern Australia". Review of Palaeobotany and Palynology. 312. 104873. doi:10.1016/j.revpalbo.2023.104873. S2CID 257223342.
  30. Bennike, O.; Colgan, W.; Hedenäs, L.; Heiri, O.; Lemdahl, G.; Wiberg-Larsen, P.; Ribeiro, S.; Pronzato, R.; Manconi, R.; Bjørk, A. A. (2022). "An Early Pleistocene interglacial deposit at Pingorsuit, North-West Greenland". Boreas. 52 (1): 27–41. doi:10.1111/bor.12596. S2CID 251938184.
  31. Wilf, P.; Iglesias, A.; Gandolfo, M. A. (2023). "The first Gondwanan Euphorbiaceae fossils reset the biogeographic history of the Macaranga-Mallotus clade". American Journal of Botany. e16169. doi:10.1002/ajb2.16169. PMID 37128981.
  32. Hermsen, E. J. (2023). "Pliocene seeds of Passiflora subgenus Decaloba (Gray Fossil Site, Tennessee) and the impact of the fossil record on understanding the diversification and biogeography of Passiflora". American Journal of Botany. 110 (3): e16137. doi:10.1002/ajb2.16137. PMID 36735676. S2CID 256596142.
  33. Hazra, T.; Bera, S.; Khan, M. A. (2023). "First Fossil Mallow Flower from Asia". International Journal of Plant Sciences. 184 (2): 106–121. doi:10.1086/723603. S2CID 256356226.
  34. Ramos, R. S.; Brea, M.; Kröhling, D. M.; Patterer, N. I. (2023). "Pleistocene subtribe Terminaliinae (Combretaceae) fossils in the middle-lower Uruguay river basin, South America". Review of Palaeobotany and Palynology. 311. 104857. doi:10.1016/j.revpalbo.2023.104857. S2CID 256492732.
  35. Wu, X.-T.; Wang, Z.-X.; Shu, J.-W.; Yin, S.-X.; Mao, L.-M.; Shi, G.-L. (2023). "A new Trapa from the middle Miocene of Zhangpu, Fujian, southeastern China". Palaeoworld. doi:10.1016/j.palwor.2023.02.008. S2CID 257370975.
  36. Chandra, K.; Spicer, R. A.; Shukla, A.; Spicer, T.; Mehrotra, R. C.; Singh, A. K. (2023). "Paleogene Ficus leaves from India and their implications for fig evolution and diversification". American Journal of Botany. 110 (3): e16145. doi:10.1002/ajb2.16145. PMID 36821420. S2CID 257174173.
  37. Centeno-González, N. K.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2023). "Nuevo género de hojas ovadas de Rhamnaceae de la Formación Olmos (Cretácico Superior) de Coahuila, México". Paleontología Mexicana. 12 (1): 33–41.
  38. Martinez Martinez, C. M. (2023). "New records of Moraceae from the upper Miocene of northeastern Argentina". Ameghiniana. 60 (1): 78–96. doi:10.5710/AMGH.04.12.2022.3519. S2CID 254401207.
  39. Denk, T.; Bouchal, J. M.; Güner, H. T.; Coiro, M.; Butzmann, R.; Pigg, K. B.; Tiffney, B. H. (2023). "Cenozoic migration of a desert plant lineage across the North Atlantic". New Phytologist. doi:10.1111/nph.18743. PMID 36651063. S2CID 255972958.
  40. Lu, P.; Zhang, J.-W.; Liang, X.-Q.; Li, H.-M.; Li, D.-L. (2023). "Ancestors of Ulmus parvifolia from late Miocene sediments in Yunnan, Southwest China and its future distribution". Review of Palaeobotany and Palynology. 313. 104879. doi:10.1016/j.revpalbo.2023.104879. S2CID 257650454.
  41. Beurel, S.; Bachelier, J. B.; Hammel, J. U.; Shi, G.-L.; Wu, X.-T.; Rühr, P. T.; Sadowski, E.-M. (2023). "Flower inclusions of Canarium (Burseraceae) from Miocene Zhangpu amber (China)". Palaeoworld. doi:10.1016/j.palwor.2023.02.006. S2CID 257274673.
  42. Del Rio, C.; Tosal, A.; Kara, E.; Manchester, S. R.; Herrera, F.; Collinson, M. E.; De Franceschi, D. (2023). "Fruits of Anacardiaceae from the Paleogene of the Paris Basin, France". International Journal of Plant Sciences. 184 (3): 164–176. doi:10.1086/723841. S2CID 256170452.
  43. Chandra, K.; Shukla, A.; Mehrotra, R. C.; Bansal, M.; Prasad, V. (2023). "Fossil Mahogany from the Early Paleogene of India". Journal of the Geological Society of India. 99 (1): 65–72. doi:10.1007/s12594-023-2268-2. S2CID 256146833.
  44. Tang, K. K.; Smith, S. Y.; Atkinson, B. A. (2023). "Winged Fruits of Friisifructus aligeri gen. et sp. nov. from the Late Cretaceous of Western North America". International Journal of Plant Sciences. 184 (4): 271–281. doi:10.1086/724745. S2CID 257989759.
  45. Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2023). "Multipartite Flowers with a Distinct Floral Cup and Multiovulate Carpels: An Early Cretaceous Angiosperm of Probable Lauralean Relationship". International Journal of Plant Sciences. 184 (2): 87–105. doi:10.1086/723682. S2CID 255675031.
  46. Wang, X.; Diez, J. B.; Pole, M.; García-Ávila, M. (2023). "An Anatomically Preserved Cone-like Flower from the Lower Cretaceous of China". Life. 13 (1). 129. doi:10.3390/life13010129. PMC 9861255. PMID 36676078.
  47. Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation". American Journal of Botany. doi:10.1002/ajb2.16163. PMID 37014186. S2CID 257922833.
  48. López-Martínez, A. M.; Schönenberger, J.; von Balthazar, M.; González-Martínez, C. A.; Ramírez-Barahona, S.; Sauquet, H.; Magallón, S. (2023). "Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence". Systematic Biology. doi:10.1093/sysbio/syad017. PMID 36995161.
  49. Yang, Y.; Yang, Z.; Lin, L.; Wang, Y.; Ferguson, D. K. (2023). "A New Gnetalean Macrofossil from the Mid-Jurassic Daohugou Formation". Plants. 12 (9). 1749. doi:10.3390/plants12091749.
  50. Bureš, J.; Šimůnek, Z.; Pšenička, J.; Bek, J.; Drábková, J.; Bruthansová, J. (2023). "Fertile cordaitalean leafy branch with in situ pollen from the volcanic Whetstone Horizon (Radnice Member, early Moscovian, Plzeň Basin, Czech Republic)". Review of Palaeobotany and Palynology. 104903. doi:10.1016/j.revpalbo.2023.104903.
  51. Lalica, M. A. K.; Tomescu, A. M. F. (2023). "Complex wound response mechanisms and phellogen evolution – insights from Early Devonian euphyllophytes". New Phytologist. doi:10.1111/nph.18926. PMID 37010090. S2CID 257910880.
  52. Liu, W.-Z.; Shen, H.-X.; Wang, X. (2023). "A novel gymnosperm reproductive organ from the Jurassic of China". Palaeoworld. doi:10.1016/j.palwor.2023.03.002. S2CID 257435347.
  53. Wang, K.; Huang, X.; Yang, W.; Wang, J.; Wan, M. (2023). "A new gymnospermous stem from the Moscovian (Carboniferous) of North China, and its palaeoecological significance for the Cathaysian Flora at the early evolutionary stage". Review of Palaeobotany and Palynology. 311. 104858. doi:10.1016/j.revpalbo.2023.104858. S2CID 256596362.
  54. Han, L.; Zhao, Y.; Zhao, M.; Sun, J.; Sun, B.; Wang, X. (2023). "New Fossil Evidence Suggests That Angiosperms Flourished in the Middle Jurassic". Life. 13 (3). 819. doi:10.3390/life13030819. PMC 10059865. PMID 36983974.
  55. Yang, X.-J. (2023). "First record of Rhaphidopteris (Gymnospermae) from the Lower Jurassic of the Junggar Basin, Xinjiang, NW China". In J. Sha; S. M. Slater; V. Vajda; P. E. Olsen; H. Zhang (eds.). The Triassic and Jurassic of the Junggar Basin, China: Advances in Palaeontology and Environments. Geological Society, London, Special Publications. Vol. 538. The Geological Society of London. doi:10.1144/SP538-2021-191.
  56. Elgorriaga, A.; Atkinson, B. A. (2023). "Cretaceous pollen cone with three-dimensional preservation sheds light on the morphological evolution of cycads in deep time". New Phytologist. 238 (4): 1695–1710. doi:10.1111/nph.18852. PMID 36943236. S2CID 257639494.
  57. Decombeix, A.-L.; Harper, C. J.; Prestianni, C.; Durieux, T.; Ramel, M.; Krings, M. (2023). "Fossil evidence of tylosis formation in Late Devonian plants". Nature Plants: 1–4. doi:10.1038/s41477-023-01394-0. PMID 37081291.
  58. Yang, Y.; Wang, S.-J.; Wang, J. (2023). "Stem Anatomy Confirms Tingia unita Is a Progymnosperm". Biology. 12 (4). 494. doi:10.3390/biology12040494.
  59. Fu, Q.; Hou, Y.; Yin, P.; Diez, J. B.; Pole, M.; García-Ávila, M.; Wang, X. (2023). "Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus". Scientific Reports. 13 (1). 426. Bibcode:2023NatSR..13..426F. doi:10.1038/s41598-022-27334-0. PMC 9829905. PMID 36624144.
  60. Mander, L.; Jaramillo, C.; Oboh-Ikuenobe, F. (2023). "Descriptive systematics of Upper Paleocene–Lower Eocene pollen and spores from the northern Niger Delta, southeastern Nigeria". Palynology. doi:10.1080/01916122.2023.2200525.
  61. Sui, Q.; Sheng, Z.-H.; Yang, J.-Y.; Guo, Y.; McLoughlin, S.; Feng, Z. (2023). "Two new isoetalean (Lycopsida) megaspore species representing the earliest occurrence of Henrisporites from upper Permian strata of Southwest China". Review of Palaeobotany and Palynology. 314. 104894. doi:10.1016/j.revpalbo.2023.104894. S2CID 258055855.
  62. Heřmanová, Z.; Kvaček, J.; Čepičková, J.; von Balthazar, M.; Luthardt, L.; Schönenberger, J. (2023). "Slavicekia gen. nov. - a new member of the Normapolles complex from Late Cretaceous sediments of the Czech Republic". International Journal of Plant Sciences. 184 (3): 201–213. doi:10.1086/724155. S2CID 256048862.
  63. Malaikanok, P.; Grímsson, F.; Denk, T.; Phuphumirat, W. (2023). "Community assembly of tropical Fagaceae-dominated forests in Thailand dates back at least to the Late Palaeogene". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boac075.
  64. Yuan, W.; Liu, M.; Chen, D.; Xing, Y.-W.; Spicer, R. A.; Chen, J.; Them, T. R.; Wang, X.; Li, S.; Guo, C.; Zhang, G.; Zhang, L.; Zhang, H.; Feng, X. (2023). "Mercury isotopes show vascular plants had colonized land extensively by the early Silurian". Science Advances. 9 (17). eade9510. doi:10.1126/sciadv.ade9510. PMC 10146902. PMID 37115923.
  65. Capel, E.; Monnet, C.; Cleal, C. J.; Xue, J.; Servais, T.; Cascales-Miñana, B. (2023). "The effect of geological biases on our perception of early land plant radiation". Palaeontology. 66 (2). e12644. doi:10.1111/pala.12644. S2CID 257654230.
  66. Capel, E.; Cleal, C. J.; Servais, T.; Cascales-Miñana, B. (2023). "New insights into Silurian–Devonian palaeophytogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 613. 111393. Bibcode:2023PPP...613k1393C. doi:10.1016/j.palaeo.2023.111393. S2CID 255727527.
  67. Dowding, E. M.; Akulov, N. I.; Mashchuk, I. M. (2023). "Survivorship dynamics of the flora of Devonian Angarida". Proceedings of the Royal Society B: Biological Sciences. 290 (1990). 20221079. doi:10.1098/rspb.2022.1079. PMC 9832553. PMID 36629112.
  68. Barrón, E.; Peyrot, D.; Bueno-Cebollada, C. A.; Kvaček, J.; Álvarez-Parra, S.; Altolaguirre, Y.; Meléndez, N. (2023). "Biodiversity of ecosystems in an arid setting: The late Albian plant communities and associated biota from eastern Iberia". PLOS ONE. 18 (3). e0282178. doi:10.1371/journal.pone.0282178. PMC 9980801. PMID 36862709.
  69. El Atfy, H.; Coiffard, C.; El Beialy, S. Y.; Uhl, D. (2023). "Vegetation and climate change at the southern margin of the Neo-Tethys during the Cenomanian (Late Cretaceous): Evidence from Egypt". PLOS ONE. 18 (1). e0281008. doi:10.1371/journal.pone.0281008. PMC 9886267. PMID 36716334.
  70. Tapia, M. J.; Farrell, E. E.; Mautino, L. R.; del Papa, C.; Barreda, V. D.; Palazzesi, L. (2023). "A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina)". PLOS ONE. 18 (4). e0277389. doi:10.1371/journal.pone.0277389. PMC 10075436. PMID 37018180.
  71. Jolly-Saad, M.-C.; Bonnefille, R. (2023). "Tropical forests and Combretaceae woodland at Usno in the Lower Omo Valley (Ethiopia), 3.3-3.2 Ma ago". Geobios. 76: 1–17. doi:10.1016/j.geobios.2023.01.003. S2CID 256214841.
  72. Adeleye, M. A.; Haberle, S. G.; Gallagher, R.; Andrew, S. C.; Herbert, A. (2023). "Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities". Nature Ecology & Evolution. 7 (2): 224–235. doi:10.1038/s41559-022-01943-4. PMID 36624175. S2CID 255569024.
  73. Góis‐Marques, Carlos A.; de Nascimento, Lea; Fernández‐Palacios, José María; Madeira, José; de Sequeira, Miguel Menezes (2023-02-15). "Description and systematic affinity of flower and seed fossils of Erica sect. Chlorocodon (Ericaceae) from the early Pleistocene of Madeira Island, Portugal". Taxon. 72 (2): 375–392. doi:10.1002/tax.12881. ISSN 0040-0262. S2CID 256975369.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.