2023 in paleomammalogy

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2023, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2023.

List of years in paleomammalogy
In paleontology
2020
2021
2022
2023
2024
2025
2026
In paleobotany
2020
2021
2022
2023
2024
2025
2026
In arthropod paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoentomology
2020
2021
2022
2023
2024
2025
2026
In paleomalacology
2020
2021
2022
2023
2024
2025
2026
In paleoichthyology
2020
2021
2022
2023
2024
2025
2026
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026

Afrotherians

Proboscideans

Name Novelty Status Authors Age Type locality Country Notes Images

Proboscidean research

  • Choudhary et al. (2023) report the first discovery of the fossil material of a mammutid (cf. Zygolophodon) from the Upper Miocene deposits of Tapar (Kutch, India), extending known temporal range of mammutids in the southern Himalayan foreland basin to ∼10 million years ago.[1]
  • Revision of the gomphothere faunas of the Miocene Linxia Basin (China) is published by Wang et al. (2023), who report the presence of three fossil assemblages of different age.[2]
  • A study on woolly mammoth genomes, identifying genetic variants associated with hair and skin development, fat storage and metabolism, and immune system function that had become fixed in the woolly mammoth lineage, is published by Díez-del-Molino et al. (2023).[3]
  • A study on the accumulation of woolly mammoth bones from the Upper Paleolithic site Kostenki 14 (Markina Gora, Voronezh Oblast, Russia), aiming to assess relations between the body size of Kostenki mammoths, the state of their population and the timeframe of bone assemblage accumulation, is published by Petrova et al. (2023), who interpret their findings as indicative of relatively long-term inhabitation of the studied area by mammoths and permanent visitation of the site.[4]
  • Evidence from tooth enamel of a woolly mammoth from the Upper Paleolithic Kraków Spadzista site (Poland), interpreted as indicating that the studied mammoth grazed in southern Poland in winter time and likely moved 250–400 km northwards during summer throughout at least 12–13 years of its adult life, is presented by Kowalik et al. (2023).[5]
  • Cherney et al. (2023) study steroid hormone concentrations in woolly mammoth tusk dentin, and report evidence periodic increases in testosterone, interpreted as indicating that male mammoths experienced episodes of musth similar to those occurring in extant African elephants.[6]

Sirenians

Name Novelty Status Authors Age Type locality Country Notes Images

Other afrotherians

Name Novelty Status Authors Age Type locality Country Notes Images
Europotamogale[7] Gen. et sp. nov Crespo, Cruzado-Caballero, & Castillo Pliocene  Spain A member of Afrosoricida. The type species is E. melkarti.

Hadrogeneios[8]

Gen. et sp. nov

Gheerbrant

Paleocene

Ouled Abdoun Basin

 Morocco

A basal member of Paenungulatomorpha. The type species is H. phosphaticus.

Euarchontoglires

Primates

Name Novelty Status Authors Age Type locality Country Notes Images

Primate research

  • Proffitt et al. (2023) report that, while cracking nuts, extant crab-eating macaques unintentionally produce flakes that fall within the technological range of artifacts made by early hominins, and caution that such flakes may be misidentified as intentional products if found in Plio-Pleistocene sites.[9]
  • Kikuchi (2023) attempts to determine the body mass of Nacholapithecus kerioi, and considers it to be an arboreal primate.[10]
  • Review of the Miocene ape systematics is published by Urciuoli & Alba (2023), who discuss the problems affecting the studies of phylogenetic relationships and evolutionary history of Miocene apes.[11]
  • Evidence from the Moroto II site (Uganda), indicating that Miocene apes from Moroto II (including Morotopithecus) shared locomotor traits with living apes and lived in seasonally dry woodlands with abundant C4 grasses, is presented by MacLatchy et al. (2023).[12]
  • A study aiming to determine absolute crown strength and bite force of the lower postcanine teeth of Gigantopithecus blacki is published by Yi et al. (2023), who report evidence of dental specialization which might represent an adaptation to processing mechanically challenging foods.[13]
  • A study on the distinctiveness of Miocene dryopithecines from the Iberian Peninsula is published by Zanolli et al. (2023), who argue that teeth of Pierolapithecus, Anoiapithecus, Dryopithecus and Hispanopithecus show morphological differences consistent with their attribution to different genera.[14]
  • A study comparing the dietary strategies of Pleistocene orangutans and Homo erectus from Sangiran (Java, Indonesia) is published by Kubat et al. (2023), who interpret their findings as indicating that H. erectus exploited varied food sources and was less dependent on variations in seasonal food availability than orangutans.[15]
  • A study on the ulnae of Hispanopithecus, Danuvius, 17 fossil hominin specimens and extant apes and humans is published by Meyer et al. (2023), who find the studied ulna of a specimen of Sahelanthropus tchadensis to fall within the knuckle-walking morphospace.[16]

General paleoanthropology

  • A study on the hominin habitat preferences over the past 3 million years is published by Zeller et al. (2023), who find that earliest hominins predominantly lived in environments such as grassland and dry shrubland, while later hominins adapted to a broader range of environments, and argue that member of the genus Homo may have preferentially selected areas with more diverse habitats.[17]
  • Hatala, Gatesy & Falkingham (2023) find that longitudinally arched footprints are not necessarily indicating that the hominins which produced them had longitudinally arched feet, but rather that such footprints are created through a pattern of foot kinematics that is characteristic of human walking; the authors consider Pleistocene tracks from Ileret (Kenya) to be the earliest known evidence for fully modern human-like bipedal kinematics, while tracks from Laetoli (Tanzania) show only partial evidence of the characteristic human walking style.[18]
  • Plummer et al. (2023) report the discovery of 3.032–2.595 million-years-old fossil material of Paranthropus and Oldowan stone tools from the Nyayanga site (Homa Peninsula, Kenya), expanding known geographic range of both Paranthropus and Oldowan tools, and providing evidence that hominins were already using tools to process soft and hard plant tissues and to butcher animals, including large animals such as hippopotamids, at the Oldowan's inception.[19]
  • New fossil material of infant and juvenile specimens of Paranthropus robustus, providing evidence of differences in the early craniofacial development between P. robustus and Australopithecus africanus, is described from southern African sites of Kromdraai and Drimolen by Braga et al. (2023), who interpret this finding as consistent with a close relationship between Paranthropus and Homo.[20]
  • A study comparing the environments inhabited by Paranthropus boisei and early members of the genus Homo at East Turkana (Kenya) is published by O'Brien, Hebdon & Faith (2023), who report that early Homo co-occurred with bovid assemblages indicative of a broader range of environments than P. boisei, and interpret their findings as supporting the interpretation of P. boisei as an ecological specialist and of early Homo as a generalist.[21]
  • Alemseged (2023) reexamines the paleobiology of Australopithecus and its significance in human evolution.[22]
  • A study on the anatomy and phylogenetic affinities of Australopithecus sediba, aiming to determine whether A. sediba and Australopithecus africanus were sister taxa, is published by Mongle, Strait & Grine (2023), who report that they could not reject the hypothesis that A. sediba shared its closest phylogenetic affinities with the genus Homo.[23]
  • Evidence from the Simbiro III site (Melka Kunture, Ethiopia), interpreted as indicating that hominins living in this area more than 1.2 million years produced standardized, large tools with sharp cutting edges in a stone-tool workshop, exploiting an accumulation of obsidian cobbles by a meandering river, is presented by Mussi et al. (2023).[24]
  • A study on the temporal spacing in the Asian fossil hominin record is published by Roberts et al. (2023), who argue that, in spite of their late persistence, the temporal range of Homo floresiensis and Homo luzonensis is not outside of the expected temporal range for Homo erectus.[25]
  • A study on the provenance of the hominin fossils from Trinil (Java, Indonesia) found during the 1891–1908 excavations is published by Pop et al. (2023), who interpret their findings as indicating that the age of the femur which caused Homo erectus to be given its name (Femur I) is uncertain and might be as young as ∼31,000 years, as well as indicating that the taxonomic attribution of this specimen is uncertain, for it might be a bone of an individual belonging to the species Homo erectus, Homo sapiens or a Denisovan.[26]
  • A study on the mandibles of hominins from the Sima de los Huesos site (Spain) is published by Quam et al. (2023), who argue that hominins from Sima de los Huesos should not be assigned to the species Homo heidelbergensis and that they were more closely related to (but distinct from) Neanderthals, indicating the presence of at least two different evolutionary lineages of hominins in Europe during the middle Pleistocene.[27]
  • Brand, Colbran & Capra (2023) use machine-learning algorithm to identify putative archaic splice-altering variants in genomes of three Neanderthals and a Denisovan, and report that variants which don't also occur in modern humans are enriched in genes that contribute to phenotypic differences among hominins.[28]
  • A study comparing the evolution of brain shape in humans and other primates is published by Sansalone et al. (2023), who determine that strong covariation between different areas of the brain in Neanderthals and modern humans evolved under higher evolutionary rates than in any other primate.[29]
  • A study on an accumulation of crania of large mammals in Level 3 of the Cueva Des-Cubierta (Madrid Region, Spain), apparently processed by Neanderthals, is published by Baquedano et al. (2023), who interpret this accumulation as a likely symbolic practice of Neanderthals.[30]
  • Evidence from the Eemian Neumark-Nord 1 site (Germany), interpreted as indicative of systematic targeting and processing of straight-tusked elephants by Neanderthals, is presented by Gaudzinski-Windheuser et al. (2023).[31]
  • Bacon et al. (2023) study non-figurative signs associated with images of animals in European caves which were produced by Upper Paleolithic humans, and interpret those signs as an early form of writing used to convey seasonal behavioural information about prey animals.[32]
  • Posth et al. (2023) study genomes of hunter-gatherers from western and central Eurasia, spanning between 35,000 and 5,000 years ago, finding that individuals associated with the Gravettian culture across Europe were not a biologically homogeneous population (with some individuals from western Europe having a genetic ancestry profile resembling that of the individuals associated with the Aurignacian culture), reporting that human populations with this ancestry profile survided in southwestern Europe during the Last Glacial Maximum and subsequently re-expanded northeastward, and finding evidence of replacement of human groups in southern Europe around the time of the Last Glacial Maximum.[33]
  • Villalba-Mouco et al. (2023) present genome-wide data from a 23,000-year-old Solutrean-associated individual from Cueva del Malalmuerzo (Spain), carrying genetic ancestry interpreted as directly connecting earlier Aurignacian-associated individuals with post-Last Glacial Maximum Magdalenian-associated ancestry in western Europe.[34]
  • A study of ancient DNA supports or confirms[35] that recent human evolution to resist infection of pathogens also increased inflammatory disease risk in post-Neolithic Europeans over the last 10,000 years, estimating nature, strength, and time of onset of selections.[36]
  • Archaeologists report the earliest evidence of bow and arrow use outside Africa (see also 12 Jun 20)~54,000 years ago in France, showing the earliest known H. sapiens to migrate into Neandertal territories used these technologies.[37]

Rodents

Name Novelty Status Authors Age Type locality Country Notes Images

Anchitheriomys buceei[38]

Sp. nov

Valid

May & Brown

Miocene (Barstovian)

Lagarto Formation

 United States
( Texas)

A member of the family Castoridae belonging to the family Anchitheriomyinae.

Aurimys[39]

Gen. et sp. nov

Valid

Samuels, Calede & Hunt

Miocene (Arikareean)

John Day Formation

 United States
( Oregon)

A member of the family Heteromyidae belonging to the subfamily Dipodomyinae. The type species is A. xeros.

Caviocricetus guenekko[40]

Sp. nov

Valid

McGrath et al.

Miocene

 Chile

A member of Caviomorpha belonging to the group Pan-Octodontoidea.

Deperetomys dingusi[41]

Sp. nov

Valid

Martin, Kelly & Holroyd

Late Oligocene or early Miocene

John Day Formation

 United States
( Oregon)

A cricetodontine-like muroid rodent.

Dudumus berggreni[40]

Sp. nov

Valid

McGrath et al.

Miocene

 Chile

A member of Caviomorpha belonging to the group Pan-Octodontoidea.

Ellesmereomys[42]

Gen. et sp. nov

Valid

Martin & Zakrzewski

Pliocene

 Canada
( Nunavut)

A member of the family Cricetidae belonging to the subfamily Baranomyinae. The type species is E. haringtoni.

Eopetes[43]

Gen. et sp. nov

Li et al.

Eocene

Keziletuogayi Formation

 China

A member of the family Sciuridae belonging to the subfamily Sciurinae. The type species is E. irtyshensis.

Hystrix velunensis[44]

Sp. nov

Valid

Czernielewski

Pliocene

 Poland

A species of Hystrix. Announced in 2022; the final article version was published in 2023.

Junggarisciurus[43]

Gen. et sp. nov

Li et al.

Eocene

Keziletuogayi Formation

 China

A member of the family Sciuridae belonging to the subfamily Sciurinae. The type species is J. jeminaiensis.

Yuomys dawai[45]

Sp. nov

Valid

Ni & Li in Ni et al.

Eocene (Irdinmanhan)

Gemusi Formation

 China

A member of Hystricognathi belonging to the family Yuomyidae.

Yuomys gemuensis[45]

Sp. nov

Valid

Ni & Li in Ni et al.

Eocene (Irdinmanhan)

Gemusi Formation

 China

A member of Hystricognathi belonging to the family Yuomyidae.

Zorania[46]

Gen. et sp. nov

Valid

Van de Weerd, de Bruijn & Wessels

Oligocene

Selimye Formation

 Turkey

A member of Hystricognathi belonging to the group Baluchimyinae. The type species is Z. milosi.

Rodent research

  • A study aiming to determine the locomotor behaviour of Diamantomys luederitzi on the basis of its skull and distal humerus morphologies is published by Bento Da Costa, Bardin & Senut (2023), who find evidence for fossorial, terrestrial and arboreal behaviour in different analyses, possibly indicative of a generalist lifestyle and/or intraspecific variation.[47]
  • The first description of the endocast of Prospaniomys priscus is presented by Arnaudo & Arnal (2023).[48]

Other euarchontoglires

Name Novelty Status Authors Age Type locality Country Notes Images

Afrolagus[49]

Gen. et sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

A member of the family Leporidae. Genus includes new species A. pomeli.

Edworthia greggi[50]

Sp. nov

Valid

Scott et al.

Paleocene

Paskapoo Formation

 Canada
( Alberta)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius dawsonae[51]

Sp. nov

Valid

Miller, Tietjen & Beard

Wasatchian

Margaret Formation

 Canada
( Nunavut)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius glenbowensis[50]

Sp. nov

Valid

Scott et al.

Paleocene

Paskapoo Formation

 Canada
( Alberta)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius mckennai[51]

Sp. nov

Valid

Miller, Tietjen & Beard

Wasatchian

Margaret Formation

 Canada
( Nunavut)

A plesiadapiform belonging to the family Paromomyidae.

Prolagus migrans[49]

Sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

Trischizolagus meridionalis[49]

Sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

A member of the family Leporidae.

Miscellaneous euarchontoglires research

  • A study on the morphology of the mandibles of members of the stem group of Glires from the Paleocene of China, providing evidence of diversification and specialization of chewing modes interpreted as indicative of different dietary specializations, is published by Fostowicz-Frelik, Cox & Li (2023).[52]
  • A study on the structure of the bony labyrinth of Megalagus turgidus, interpreted as indicative of rabbit-like hearing sensitivity and locomotor behavior, is published by López-Torres et al. (2023).[53]
  • White et al. (2023) present the virtual endocast of a specimen of Niptomomys cf. N. doreenae from the Paleocene of Wyoming (United States), and interpret the anatomy of the brain of this plesiadapiform as consistent with the interpretations of plesiadapiforms as being more olfaction-focused than euprimates.[54]

Laurasiatherians

Cetaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Coronodon newtonorum[55]

Sp. nov

Valid

Boessenecker, Beatty & Geisler

Oligocene

Chandler Bridge Formation

 United States
( South Carolina)

Coronodon planifrons[55]

Sp. nov

Valid

Boessenecker, Beatty & Geisler

Oligocene

Chandler Bridge Formation

 United States
( South Carolina)

Jobancetus[56]

Gen. et sp. nov

Valid

Kimura, Hasegawa & Suzuki

Miocene (Burdigalian)

Minamishirado Formation

 Japan

A baleen whale of uncertain affinities. Genus includes new species J. pacificus. Published online in 2022, but the issue date is listed as January 2023.[56]

Platysvercus[57] Gen. et sp. nov Guo & Kohno Miocene (Burdigalian) Sugota Formation  Japan A member of the family Kentriodontidae. The type species is P. ugonis.
Cetacean research
  • A study on the evolution of the body length of cetaceans, providing evidence of very few global shifts in body length after cetaceans entered the oceans, but also of multiple local, more taxonomically restricted shifts, is published by Burin et al. (2023).[58]
  • A study on the bone microanatomy of two basilosaurid specimens from the Eocene deposits of Ukraine assigned to the genus Basilotritus, providing evidence of an advanced system of ballast distribution in the skeleton, is published by Davydenko, Tretiakov & Gol'din (2023).[59]
  • Revision of the eurhinodelphinid cranial material from the Miocene Pietra da Cantoni Formation in the Monferrato area (Piedmont, Italy) is published by Tosetto et al. (2023), who also study the phylogenetic relationships and biogeography of eurhinodelphinids, interpreting their presence in the Mediterranean, Northwest Atlantic and Paratethys as the result of different dispersal events from a Northeast Atlantic center of origin.[60]
  • Tanaka, Nagasawa & Oba (2023) describe a skull of a rorqual from the Pliocene-Pleistocene Shinazawa Formation (Japan), identified as aff. Balaenoptera bertae and extending known geographic range of the lineage of B. bertae (formerly known only from the Pliocene Purisima Formation, California, United States).[61]
  • Govender & Marx (2023) describe new baleen whale fossils the early Pliocene localities of Saldanha Steel, Milnerton and Langebaanweg (South Africa), including fossils of rorquals belonging to the genera Diunatans and Fragilicetus (previously known only from the North Sea), as well as potentially younger specimens trawled from the seafloor off the Cape Peninsula and south coast of South Africa, including the first pygmy right whale fossil material from Africa reported to date.[62]

Other artiodactyls

Name Novelty Status Authors Age Type locality Country Notes Images
Dama celiae[63] Sp. nov van der Made et al. Pleistocene  Spain A species of fallow-deer.

Entelodontellus[64]

Gen. et sp. nov

Valid

Yu et al.

Eocene

Caijiachong Formation

 China

An entelodont. The type species is E. zhouliangi.

Hispanomeryx linxiaensis[65]

Sp. nov

Aiglstorfer et al.

Miocene

Linxia Basin

 China

A member of the family Moschidae.

"Micromeryx" caoi[65]

Sp. nov

Aiglstorfer et al.

Miocene

Linxia Basin

 China

A member of the family Moschidae.

Obotherium[66] Gen. et sp. nov Bai et al. Eocene Irdin Manha Formation  China A member of the family Tapirulidae. The type species is O. parvum, also includes new species O. tongi.
Tapiruloides[66] Gen. et sp. nov Bai et al. Eocene Shara Murun Formation  China A member of the family Tapirulidae. The type species is T. usuensis.

Turcocerus africanus[67]

Sp. nov

Geraads, McCrossin & Benefit

Miocene

 Kenya

A bovid.

Umbrotherium engesserii[68]

Sp. nov

Valid

Pandolfi & Rook

Miocene (Turolian)

 Italy

A member of the family Giraffidae.

Other artiodactyl research
  • New information on the anatomy of the skull of Hypisodus minimus is provided by Keppeler et al. (2023).[69]
  • Uzunidis et al. (2023) describe fossil material of the Irish elk from the Teixoneres Cave, representing the first record of this species from the late Pleistocene of the eastern Iberian Peninsula, and interpret the fossil record of the Irish elk from the Iberian Peninsula in general to be indicative of rare incursions during the colder periods associated with a drop in sea level making it possible to bypass the Pyrenees, and indicative of differences in diets of Iberian individuals and Northern European individuals.[70]
  • Klein et al. (2023) describe partial bony labyrinth of a fetus of Miotragocerus pannoniae from the Miocene locality Höwenegg (Baden-Württemberg, Germany) and compare it with bony labyrinths of adult specimens from the same locality, providing the first information on the growth and ontogenetic variation of this structure in a fossil bovid.[71]
  • Description of new fossil material of Miotragocerus gregarius from the Linxia Basin and Fugu County (China) and a study on the affinities of this bovid is published by Shi & Zhang (2023).[72]
  • New fossil material of Neotragocerus is described from the Hemphillian Fort Rock Formation (Oregon, United States) by Martin & Mead (2023), who interpret the anatomy of members of this genus as indicative of boselaphine affinities, retain N. improvisus as a valid species, and consider N. lindgreni to be a nomen dubium.[73]
  • A study on the auditory region morphology of extant and extinct members of Hippopotamoidea, and on its implications for putative aquatic affinities of fossil hippopotamoids, is published by Orliac et al. (2023), who interpret their findings as indicative of independent acquisitions of semiaquatic behaviour in hippopotamids and cetaceans.[74]
  • Jiménez-Hidalgo & Carbot-Chanona (2023) describe fossil material of an anthracothere belonging to the genus Arretotherium from the Oligocene Iniyoo Local Fauna (Oaxaca) and from the Miocene of Simojovel de Allende (Chiapas), representing the first records of anthracotheres in Mexico reported to date and the southernmost records of Arretotherium in North America during the Oligocene and the early Miocene.[75]
  • Description of new fossil material of Parabrachyodus hyopotamoides from the Miocene deposits from Samane Nala (Bugti Hills, Pakistan) and a study on the affinities of this anthracothere is published by Gernelle et al. (2023).[76]
  • A study on the affinities of "Hippopotamus" pantanellii is published by Martino et al. (2023), who transfer this species to the genus Archaeopotamus.[77]
  • Revision of the Early Pleistocene hippopotamid material from Buia (Eritrea) is published by Pandolfi et al. (2023), who report the presence of two hippopotamid species at Buia (Hippopotamus gorgops and aff. Hippopotamus karumensis, the latter representing the northernmost and one of the youngest occurrences of the species in Africa), and provide new characters for taxonomic discrimination between the two taxa.[78]

Carnivorans

Name Novelty Status Authors Age Type locality Country Notes Images

Amphimachairodus hezhengensis[79]

Sp. nov

Jiangzuo et al.

Miocene

Linxia Basin

 China

Huracan[80]

Gen. et comb. et sp. nov

Valid

Jiangzuo et al.

Miocene, Pliocene, possibly earliest Pleistocene

 China
 Spain
 United States
 Pakistan?

A bear belonging to the tribe Agriotheriini. The type species is "Agriotherium" schneideri Sellards (1916); genus also includes new species H. qiui from East Asia, as well as "Agriotherium" coffeyi Dalquest (1986) from North America, "Agriotherium" roblesi Morales & Aguirre (1976) from Europe and possibly "Hyaenarctos" punjabiensis Lydekker (1884) from South Asia.

Lonchocyon[81]

Gen. et sp. nov

Valid

Zhang, Bai & Wang

Eocene

Baron Sog Formation

 China

A member of Arctoidea of uncertain affinities, possibly an early offshoot of amphicyonids or hemicyonines. The type species is L. qiui.

Palaeopanthera[82]

Gen. et comb. nov

Valid

Hemmer

Miocene and Pliocene

 China
 Turkey

A felid with affinities to members of the genus Neofelis. Genus includes "Panthera" blytheae Tseng et al. (2014) and "Felis" pamiri Ozansoy.

Panthera gombaszoegensis jinpuensis[83]

Ssp. nov

Valid

Jiangzuo et al.

Middle Pleistocene

 China

Announced in 2022; the final article version was published in 2023.

Pinnarctidion iverseni[84] Sp. nov Everett, Deméré & Wyss Oligocene Pysht Formation  United States ( Washington) A basal pinnipediform.

Carnivoran research

  • Morlo et al. (2023) describe amphicyonid fossil material from the Miocene site Napudet (Emunyan Beds; Kenya), including a molar of a large-bodied amphicyonid, interpreted as likely distinct from Cynelos jitu and probably belonging to the genus Myacyon.[85]
  • Varajão de Latorre (2023) compares the bacula of five species of borophagine canids with those of extant canids, and interprets their anatomy as indicating that borophagines had long copulatory durations and spontaneous ovulation, similar to those occurring in extant canines.[86]
  • Partial left hindlimb assigned to cf. Aenocyon dirus is reported from the Upper Pleistocene deposits from the QM38 site in Quebrada Maní (Pampa del Tamarugal basin, Atacama Desert, northern Chile) by Caro et al. (2023), representing the only large predator in its ecosystem reported to date.[87]
  • Martínez-Navarro et al. (2023) report the discovery of Early Pleistocene fossil material of the Ethiopian wolf from the Melka Wakena site-complex (Ethiopia), representing the first appearance of this species in the fossil record reported to date.[88]
  • Revision of the systematics of large canids from the Pleistocene of South America is published by Prevosti (2023), who synonymizes Protocyon orcesi with Protocyon troglodytes and Canis nehringi with Aenocyon dirus, transfers "Theriodictis" tarijensis to the genus Protocyon, and excluded "Canis" gezi from the genus Canis.[89]
  • A study on the ecomorphology of percrocutoids, as inferred from postcanine teeth, is published by Pérez-Claros (2023).[90]
  • A study on the ecomorphology of Ictitherium viverrinum and Hyaenictitherium wongii is published by Kargopoulos et al. (2023), who consider both species to occupy a niche similar to that of extant coyote and to be likely engaged in interspecific competition.[91]
  • A study on the elbow joint of Miracinonyx trumani is published by Figueirido et al. (2023), who find that M. trumani had an elbow morphology intermediate to that of extant cougar and extant cheetah, and argue that M. trumani was not as specialized as the cheetah for deploying a predatory behaviour based on fast running.[92]

Chiropterans

Name Novelty Status Authors Age Type locality Country Notes Images

Icaronycteris gunnelli[93]

Sp. nov

Rietbergen et al.

Wasatchian

Green River Formation

 United States
( Wyoming)

Xenorhinos bhatnagari[94]

Sp. nov

Valid

Hand et al.

Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Rhinonycteridae.

Chiropteran research

  • The first skull material of Eptesicus praeglacialis is described from the Lower Pleistocene deposits of the Taurida cave (Crimea) by Lopatin (2023).[95]

Eulipotyphlans

Name Novelty Status Authors Age Type locality Country Notes Images

Mystipterus austinae[96]

Sp. nov

Valid

Korth, Boyd & Emry

Oligocene (Whitneyan)

Brule Formation

 United States
( North Dakota)

A member of the family Talpidae.

Perissodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Idiodontherium[97]

Gen. et 2 sp. nov

Perales-Gogenola et al.

Eocene

 Spain

A member of the family Palaeotheriidae. Genus includes I. martindejesusi and I. astibiai.

Parvorhinus[98] Gen et. comb. nov In press Pandolfi & Martino Miocene  Germany A rhinoceros. The type species is "Dicerorhinus" steinheimensis.

Perissodactyl research

  • Kampouridis, Rățoi & Ursachi (2023) describe new chalicothere material from the Miocene Pogana 1 locality (Romania), and identify the locality as one of the few confirmed cases of the cooccurrence of schizotheriine and chalicotheriine chalicotheres.[99]
  • Description of a new skull of Zaisanamynodon borisovi from the Eocene Aksyir Svita (Kazakhstan) and a new skull of Metamynodon planifrons from the Oligocene Brule Formation (South Dakota, United States), as well as a study on the phylogenetic relationships of amynodontids, is published by Veine-Tonizzo et al. (2023).[100]
  • A study on the phylogenetic relationships of rhinoceroses belonging to the group Aceratheriinae is published by Lu, Deng & Pandolfi (2023).[101]
  • A skull of a rhinoceros is described from the late Neogene Qin Basin (Shanxi, China) by Shi et al. (2023), who assign this skull to the species Dihoplus ringstroemi, and confirm that D. ringstroemi was a distinct species.[102]
  • A study on the phylogenetic relationships of Eurasian Quaternary rhinoceroses is published by Pandolfi (2023).[103]
  • A study on the evolution of body size in brontotheres is published by Sanisidro, Mihlbachler & Cantalapiedra (2023), who interpret their findings as indicative of higher survival of larger lineages resulting from reduced competition with other herbivores.[104]
  • Revision of the Pliocene and Early Pleistocene hipparionin equid species from western Eurasia is published by Cirilli et al. (2023).[105]

Other laurasiatherians

Name Novelty Status Authors Age Type locality Country Notes Images

Berracotherium[106]

Gen. et sp. nov

Fernández et al.

Middle Eocene-early Oligocene

Quebrada de Los Colorados Formation

 Argentina

A member of Pyrotheria belonging to the family Pyrotheriidae. The type species is B. koimeterion.

Maocyon[107] Gen. et sp. nov Averianov et al. Eocene Youganwo Formation  China A hyaenodont belonging to the family Hyainailouridae. The type species is M. peregrinus.
Micrauchenia[108] Gen. et sp. nov Püschel et al. Late Miocene Bahía Inglesa Formation  Chile A member of Litopterna belonging to the family Macraucheniidae. The type species is M. saladensis.

Prodissopsalis jimenezi[109]

Sp. nov

Valid

Salesa et al.

Eocene (Bartonian)

Mazaterón Formation

 Spain

A hyaenodont belonging to the family Hyaenodontidae.

Promylophis[110]

Gen. et sp. nov

Shockey et al.

Oligocene (Deseadan)

Salla Beds

 Bolivia

A member of Litopterna belonging to the family Proterotheriidae. The type species is P. cifellii.

Miscellaneous laurasiatherian research

  • A study aiming to determine the optimal neck posture of Macrauchenia patachonica is published by Blanco, Yorio & Montenegro (2023).[111]
  • Revision of the fossil material and the systematic status of Peripantostylops and Othnielmarshia is published by Vera & Mones (2023).[112]
  • Systematic revision of the genera Icochilus and Interatherium is published by Fernández, Fernicola & Cerdeño (2023), who consider Icochilus to be a junior synonym of Interatherium, conclude that the genus Interatherium comprises the species I. rodens and I. extensus with wide geographic and temporal distribution, and find that the Santa Cruz Formation cannot be subdivided based on the presence or absence of any species of Interatherium.[113]
  • A study on the bone histology of Caraguatypotherium munozi, providing evidence of inter-skeletal variation on bone growth rates and marked cyclical growth, is published by Campos-Medina et al. (2023).[114]
  • Solé et al. (2023) reinstate Hyaenodictis as a genus distinct from Dissacus, and describe new fossil material of Hyaenodictis raslanloubatieri and H. rougierae from the Eocene (Ypresian) sites of La Borie and Palette (France), providing evidence that these mesonychids were digitigrade in posture and relatively cursorial in locomotion.[115]

Xenarthrans

Cingulatans

Name Novelty Status Authors Age Type locality Country Notes Images

Cingulatan research

  • New collection of dasypodid osteoderms, identified as belonging to armadillos with strong affinities with taxa from Late Miocene localities in northwestern Argentina, is described from the Miocene Toro Negro Formation (La Rioja Province, Argentina) by Brandoni, Barasoain & González Ruiz (2023).[116]

Pilosans

Name Novelty Status Authors Age Type locality Country Notes Images

Pilosan research

  • Description of the skull anatomy of Schismotherium fractum is published by Gaudin et al. (2023), who confirm that S. fractum was a taxon distinct from Pelecyodon cristatus.[117]

Other eutherians

Name Novelty Status Authors Age Type locality Country Notes Images

Miscellaneous eutherian research

  • Novacek, Hoffman & O'leary (2023) describe new fossil material of Asioryctes nemegtensis from the Upper Cretaceous Djadochta Formation (Mongolia), expanding known geographic and stratigraphic range of this species.[118]

Metatherians

Name Novelty Status Authors Age Type locality Country Notes Images

Archerus[119]

Gen. et sp. nov

Valid

Myers & Crosby

Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Phalangeridae. The type species is A. johntoniae.

Chunia pledgei[120]

Sp. nov

Crichton et al.

Oligocene

 Australia

A member of the family Ektopodontidae.

Enigmaleo[121]

Gen. et sp. nov

Gillespie

Early Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Thylacoleonidae. The type species is E. archeri.

Lekaneleo myersi[121]

Sp. nov

Gillespie

Middle Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Thylacoleonidae.

Lutreolina tonnii[122]

Sp. nov

Valid

Goin & de los Reyes

Pleistocene

 Argentina

A species of Lutreolina.

Malleodectes? wentworthi[123]

Sp. nov

Churchill et al.

Miocene

Riversleigh World Heritage Area

 Australia

A member of Dasyuromorphia belonging to the family Malleodectidae.

Mukupirna fortidentata[124] Sp. nov Crichton et al. Oligocene  Australia A member of the family Mukupirnidae.

Urrayira[125]

Gen. et sp. nov

Valid

Cramb et al.

Pleistocene (Chibanian)

 Australia

A member of Dasyuromorphia belonging or related to the family Dasyuridae. The type species is U. whitei.

Metatherian research

  • A study on the affinities of metatherians from the Paleogene Itaboraí Basin (Brazil) is published by Carneiro & Oliveira (2023).[126]
  • A study on the skull and likely vision of Thylacosmilus atrox is published by Gaillard, MacPhee & Forasiepi (2023), who find that, while changes in the skull anatomy related to the growth of the canines of this sparassodont resulted in a divergent orbit orientation, frontation and verticality of the orbits compensated for their low convergence and made it possible to partially preserve binocularity.[127]
  • Gônet et al. (2023) present a model which can be used to determine posture from humeral parameters in extant mammals, and use it to infer a crouched posture for Peratherium cuvieri.[128]
  • A study on the affinities of Estelestes ensis is published by Goin et al. (2023).[129]
  • A study on the bone histology of Nimbadon lavarackorum, providing evidence that this marsupial experienced cyclical growth rates and needed at least 7–8 years to reach skeletal maturity, is published by Chinsamy et al. (2023).[130]

Monotremes

Name Novelty Status Authors Age Type locality Country Notes Images

Patagorhynchus[131]

Gen. et sp. nov

Valid

Chimento et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

The type species is P. pascuali.

Other mammals

Name Novelty Status Authors Age Type locality Country Notes Images

Other mammalian research

  • Krause & Hoffmann (2023) provisionally assign a caudal vertebra from the Anembalemba Member of the Upper Cretaceous Maevarano Formation (Madagascar) to Vintana sertichi, representing the first known postcranial material of this species.[132]
  • Luo & Martin (2023) describe new fossil material (mandibles and teeth) of Henkelotherium guimarotae, reporting evidence of late eruption of several molars after completion of replacement of antemolar teeth, possibly indicating longer-lived life or different life-history traits than in crown therians.[133]

General mammalian research

  • A study on the masticatory muscle features of extant and extinct mammals is published by Ercoli et al. (2023), who find that early mammaliaforms and mammals had similar muscle proportions to those of living carnivores, and find similarities in the masticatory muscle features of rodents and derived extinct euungulates and diprotodonts.[134]
  • A study on the timing of the placental diversification, as inferred from genomic data, is published by Foley et al. (2023), who interpret their findings as indicative of diversification of placentals coinciding with the breakup of continental landmasses and rising sea levels in the Late Cretaceous, and a second pulse of diversification after the Cretaceous–Paleogene extinction event.[135]

References

  1. Choudhary, D.; Jukar, A. M.; Patnaik, R.; Singh, N. A.; Singh, N. P.; Sharma, K. M. (2023). "The first report of cf. Zygolophodon (Mammalia, Proboscidea, Mammutidae) from the Upper Miocene of Kutch, India". Journal of Vertebrate Paleontology. e2197959. doi:10.1080/02724634.2023.2197959.
  2. Wang, S.-Q.; Li, C.; Li, Y.; Zhang, X. (2023). "Gomphotheres from Linxia Basin, China, and their significance in biostratigraphy, biochronology, and paleozoogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 613. 111405. doi:10.1016/j.palaeo.2023.111405. S2CID 255906489.
  3. Díez-del-Molino, D.; Dehasque, M.; Chacón-Duque, J. C.; Pečnerová, P.; Tikhonov, A.; Protopopov, A.; Plotnikov, V.; Kanellidou, F.; Nikolskiy, P.; Mortensen, P.; Danilov, G. K.; Vartanyan, S.; Gilbert, M. T. P.; Lister, A. M.; Heintzman, P. D.; van der Valk, T.; Dalén, L. (2023). "Genomics of adaptive evolution in the woolly mammoth". Current Biology. 33 (9): 1753–1764.e4. doi:10.1016/j.cub.2023.03.084. PMID 37030294.
  4. Petrova, E. A.; Voyta, L. L.; Bessudnov, A. A.; Sinitsyn, A. A. (2023). "An integrative paleobiological study of woolly mammoths from the Upper Paleolithic site Kostenki 14 (European Russia)". Quaternary Science Reviews. 302. 107948. doi:10.1016/j.quascirev.2022.107948. S2CID 255934581.
  5. Kowalik, N.; Anczkiewicz, R.; Müller, W.; Spötl, C.; Bondioli, L.; Nava, A.; Wojtal, P.; Wilczyński, J.; Koziarska, M.; Matyszczak, M. (2023). "Revealing seasonal woolly mammoth migration with spatially-resolved trace element, Sr and O isotopic records of molar enamel". Quaternary Science Reviews. 306. 108036. doi:10.1016/j.quascirev.2023.108036. S2CID 257594840.
  6. Cherney, M. D.; Fisher, D. C.; Auchus, R. J.; Rountrey, A. N.; Selcer, P.; Shirley, E. A.; Beld, S. G.; Buigues, B.; Mol, D.; Boeskorov, G. G.; Vartanyan, S. L.; Tikhonov, A. N. (2023). "Testosterone histories from tusks reveal woolly mammoth musth episodes". Nature. 617 (7961): 533–539. doi:10.1038/s41586-023-06020-9. PMID 37138076.
  7. Crespo, Vicente D.; Cruzado-Caballero, Penélope; Castillo, Carolina (2023-03-21). "First afrosoricid out of Africa: an example of Pliocene 'tourism' in Europe". Palaeoworld. doi:10.1016/j.palwor.2023.03.006. ISSN 1871-174X. S2CID 257677785.
  8. Gheerbrant, E. (2023). "Ancestral radiation of paenungulate mammals (Paenungulatomorpha)—new evidence from the Paleocene of Morocco". Journal of Vertebrate Paleontology. e2197971. doi:10.1080/02724634.2023.2197971.
  9. Proffitt, T.; Reeves, J. S.; Braun, D. R.; Malaivijitnond, S.; Luncz, L. V. (2023). "Wild macaques challenge the origin of intentional tool production". Science Advances. 9 (10). eade8159. doi:10.1126/sciadv.ade8159. PMC 10005173. PMID 36897944.
  10. Kikuchi, Y. (2023). "Body mass estimates from postcranial skeletons and implication for positional behavior in Nacholapithecus kerioi: Evolutionary scenarios of modern apes". The Anatomical Record. doi:10.1002/ar.25173. PMID 36753432. S2CID 256663258.
  11. Urciuoli, A.; Alba, D. M. (2023). "Systematics of Miocene apes: State of the art of a neverending controversy". Journal of Human Evolution. 175. 103309. doi:10.1016/j.jhevol.2022.103309. PMID 36716680. S2CID 256386037.
  12. MacLatchy, L. M.; Cote, S. M.; Deino, A. L.; Kityo, R. M. C.; Mugume, A. A. T.; Rossie, J. B.; Sanders, W. J.; Cosman, M. N.; Driese, S. G.; Fox, D. L.; Freeman, A. J.; Jansma, R. J. W.; Jenkins, K. E. H.; Kinyanjui, R. N.; Lukens, W. E.; McNulty, K. P.; Novello, A.; Peppe, D. J.; Strömberg, C. A. E.; Uno, K. T.; Winkler, A. J.; Kingston, J. D. (2023). "The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma site in Uganda". Science. 380 (6641). eabq2835. doi:10.1126/science.abq2835. PMID 37053310.
  13. Yi, Z.; Zanolli, C.; Liao, W.; Wang, W. (2023). "Estimates of absolute crown strength and bite force in the lower postcanine dentition of Gigantopithecus blacki". Journal of Human Evolution. 175. 103313. doi:10.1016/j.jhevol.2022.103313. PMID 36709569. S2CID 256379920.
  14. Zanolli, C.; Bouchet, F.; Fortuny, J.; Bernardini, F.; Tuniz, C.; Alba, D. M. (2023). "A reassessment of the distinctiveness of dryopithecine genera from the Iberian Miocene based on enamel-dentine junction geometric morphometric analyses". Journal of Human Evolution. 177. 103326. doi:10.1016/j.jhevol.2023.103326. PMID 36863301. S2CID 257268904.
  15. Kubat, J.; Nava, A.; Bondioli, L.; Dean, M. C.; Zanolli, C.; Bourgon, N.; Bacon, A.-M.; Demeter, F.; Peripoli, B.; Albert, R.; Lüdecke, T.; Hertler, C.; Mahoney, P.; Kullmer, O.; Schrenk, F.; Müller, W. (2023). "Dietary strategies of Pleistocene Pongo sp. and Homo erectus on Java (Indonesia)". Nature Ecology & Evolution. 7 (2): 279–289. doi:10.1038/s41559-022-01947-0. PMID 36646949. S2CID 244192277.
  16. Meyer, M. R.; Jung, J. P.; Spear, J. K.; Araiza, I. Fx.; Galway-Witham, J.; Williams, S. A. (2023). "Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids". Journal of Human Evolution. 179. 103355. doi:10.1016/j.jhevol.2023.103355. PMID 37003245.
  17. Zeller, E.; Timmermann, A.; Yun, K.-S.; Raia, P.; Stein, K.; Ruan, J. (2023). "Human adaptation to diverse biomes over the past 3 million years". Science. 380 (6645): 604–608. doi:10.1126/science.abq1288.
  18. Hatala, K. G.; Gatesy, S. M.; Falkingham, P. L. (2023). "Arched footprints preserve the motions of fossil hominin feet" (PDF). Nature Ecology & Evolution. 7 (1): 32–41. doi:10.1038/s41559-022-01929-2. PMID 36604550. S2CID 255466788. Archived (PDF) from the original on 2023-03-04. Retrieved 2023-02-21.
  19. Plummer, T. W.; Oliver, J. S.; Finestone, E. M.; Ditchfield, P. W.; Bishop, L. C.; Blumenthal, S. A.; Lemorini, C.; Caricola, I.; Bailey, S. E.; Herries, A. I. R.; Parkinson, J. A.; Whitfield, E.; Hertel, F.; Kinyanjui, R. N.; Vincent, T. H.; Li, Y.; Louys, J.; Frost, S. R.; Braun, D. R.; Reeves, J. S.; Early, E. D. G.; Onyango, B.; Lamela-Lopez, R.; Forrest, F. L.; He, H.; Lane, T. P.; Frouin, M.; Nomade, S.; Wilson, E. P.; Bartilol, S. K.; Rotich, N. K.; Potts, R. (2023). "Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus". Science. 379 (6632): 561–566. doi:10.1126/science.abo7452. PMID 36758076. S2CID 256697931. Archived from the original on 2023-02-09. Retrieved 2023-02-09.
  20. Braga, J.; Wood, B. A.; Zimmer, V. A.; Moreno, B.; Miller, C.; Thackeray, J. F.; Zipfel, B.; Grine, F. E. (2023). "Hominin fossils from Kromdraai and Drimolen inform Paranthropus robustus craniofacial ontogeny". Science Advances. 9 (18). eade7165. doi:10.1126/sciadv.ade7165. PMC 10156105. PMID 37134165.
  21. O'Brien, K.; Hebdon, N.; Faith, J. T. (2023). "Paleoecological evidence for environmental specialization in Paranthropus boisei compared to early Homo". Journal of Human Evolution. 177. 103325. doi:10.1016/j.jhevol.2023.103325. PMID 36805971. S2CID 256973634.
  22. Alemseged, Z. (2023). "Reappraising the palaeobiology of Australopithecus". Nature. 617 (7959): 45–54. doi:10.1038/s41586-023-05957-1. PMID 37138108.
  23. Mongle, C. S.; Strait, D. S.; Grine, F. E. (2023). "An updated analysis of hominin phylogeny with an emphasis on re-evaluating the phylogenetic relationships of Australopithecus sediba". Journal of Human Evolution. 175. 103311. doi:10.1016/j.jhevol.2022.103311. PMID 36706599. S2CID 256296590.
  24. Mussi, M.; Mendez-Quintas, E.; Barboni, D.; Bocherens, H.; Bonnefille, R.; Briatico, G.; Geraads, D.; Melis, R. T.; Panera, J.; Pioli, L.; Serodio Domínguez, A.; Rubio Jara, S. (2023). "A surge in obsidian exploitation more than 1.2 million years ago at Simbiro III (Melka Kunture, Upper Awash, Ethiopia)". Nature Ecology & Evolution. 7 (3): 337–346. doi:10.1038/s41559-022-01970-1. PMID 36658266. S2CID 256032112.
  25. Roberts, D. L.; Jarić, I.; Lycett, S. J.; Flicker, D.; Key, A. (2023). "Homo floresiensis and Homo luzonensis are not temporally exceptional relative to Homo erectus". Journal of Quaternary Science. doi:10.1002/jqs.3498. S2CID 256178800. Archived from the original on 2023-01-17. Retrieved 2023-02-21.
  26. Pop, E.; Hilgen, S.; Adhityatama, S.; Berghuis, H.; Veldkamp, T.; Vonhof, H.; Sutisna, I.; Alink, G.; Noerwidi, S.; Roebroeks, W.; Joordens, J. (2023). "Reconstructing the provenance of the hominin fossils from Trinil (Java, Indonesia) through an integrated analysis of the historical and recent excavations". Journal of Human Evolution. 176. 103312. doi:10.1016/j.jhevol.2022.103312. PMID 36745959. S2CID 256610380.
  27. Quam, R.; Martínez, I.; Rak, Y.; Hylander, B.; Pantoja, A.; Lorenzo, C.; Conde-Valverde, M.; Keeling, B.; Ortega Martínez, M. C.; Arsuaga, J. L. (2023). "The Neandertal nature of the Atapuerca Sima de los Huesos mandibles". The Anatomical Record. doi:10.1002/ar.25190. PMID 36998196.
  28. Brand, C. M.; Colbran, L. L.; Capra, J. A. (2023). "Resurrecting the alternative splicing landscape of archaic hominins using machine learning". Nature Ecology & Evolution: 1–15. doi:10.1038/s41559-023-02053-5. PMID 37142741.
  29. Sansalone, G.; Profico, A.; Wroe, S.; Allen, K.; Ledogar, J.; Ledogar, S.; Mitchell, D. R.; Mondanaro, A.; Melchionna, M.; Castiglione, S.; Serio, C.; Raia, P. (2023). "Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood". Nature Ecology & Evolution. 7 (1): 42–50. doi:10.1038/s41559-022-01933-6. PMID 36604552. S2CID 255464800.
  30. Baquedano, E.; Arsuaga, J. L.; Pérez-González, A.; Laplana, C.; Márquez, B.; Huguet, R.; Gómez-Soler, S.; Villaescusa, L.; Galindo-Pellicena, M. Á.; Rodríguez, L.; García-González, R.; Ortega, M.-C.; Martín-Perea, D. M.; Ortega, A. I.; Hernández-Vivanco, L.; Ruiz-Liso, G.; Gómez-Hernanz, J.; Alonso-Martín, J. I.; Abrunhosa, A.; Moclán, A.; Casado, A. I.; Vegara-Riquelme, M.; Álvarez-Fernández, A.; Domínguez-García, Á. C.; Álvarez-Lao, D. J.; García, N.; Sevilla, P.; Blain, H.-A.; Ruiz-Zapata, B.; Gil-García, M. J.; Álvarez-Vena, A.; Sanz, T.; Quam, R.; Higham, T. (2023). "A symbolic Neanderthal accumulation of large herbivore crania". Nature Human Behaviour. 7 (3): 342–352. doi:10.1038/s41562-022-01503-7. PMC 10038806. PMID 36702939. S2CID 256304627.
  31. Gaudzinski-Windheuser, S.; Kindler, L.; MacDonald, K.; Roebroeks, W. (2023). "Hunting and processing of straight-tusked elephants 125.000 years ago: Implications for Neanderthal behavior". Science Advances. 9 (5): eadd8186. doi:10.1126/sciadv.add8186. PMC 9891704. PMID 36724231.
  32. Bacon, B.; Khatiri, A.; Palmer, J.; Freeth, T.; Pettitt, P.; Kentridge, R. (2023). "An Upper Palaeolithic Proto-writing System and Phenological Calendar". Cambridge Archaeological Journal: 1–19. doi:10.1017/S0959774322000415. S2CID 255723053.
  33. Posth, C.; Yu, H.; Ghalichi, A.; Rougier, H.; et al. (2023). "Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers". Nature. 615 (7950): 117–126. doi:10.1038/s41586-023-05726-0. PMC 9977688. PMID 36859578. This article incorporates text from this source, which is available under the CC BY 4.0 license.
  34. Villalba-Mouco, V.; van de Loosdrecht, M. S.; Rohrlach, A. B.; Fewlass, H.; Talamo, S.; Yu, H.; Aron, F.; Lalueza-Fox, C.; Cabello, L.; Cantalejo Duarte, P.; Ramos-Muñoz, J.; Posth, C.; Krause, J.; Weniger, G.-C.; Haak, W. (2023). "A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum". Nature Ecology & Evolution. 7 (4): 597–609. doi:10.1038/s41559-023-01987-0. PMC 10089921. PMID 36859553. S2CID 257282497.
  35. Barreiro, Luis B.; Quintana-Murci, Lluís (January 2010). "From evolutionary genetics to human immunology: how selection shapes host defence genes". Nature Reviews Genetics. 11 (1): 17–30. doi:10.1038/nrg2698. ISSN 1471-0064. PMID 19953080. S2CID 15705508.
  36. Kerner, Gaspard; Neehus, Anna-Lena; Philippot, Quentin; Bohlen, Jonathan; Rinchai, Darawan; Kerrouche, Nacim; Puel, Anne; Zhang, Shen-Ying; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Laval, Guillaume; Quintana-Murci, Lluis (8 February 2023). "Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe". Cell Genomics. 3 (2): 100248. doi:10.1016/j.xgen.2022.100248. ISSN 2666-979X. PMC 9932995. PMID 36819665. S2CID 250341156.
  37. Metz, Laure; Lewis, Jason E.; Slimak, Ludovic (24 February 2023). "Bow-and-arrow, technology of the first modern humans in Europe 54,000 years ago at Mandrin, France". Science Advances. 9 (8): eadd4675. doi:10.1126/sciadv.add4675. PMC 9946345. PMID 36812314.
  38. May, S. R.; Brown, M. A. (2023). "Anchitheriomys buceei (Rodentia, Castoridae) from the Miocene of Texas and a review of the Miocene beavers from the Texas Coastal Plain, USA". Palaeontologia Electronica. 26 (1). 26.1.a7. doi:10.26879/1236.
  39. Samuels, J. X.; Calede, J. J.-M.; Hunt, R. M. (2023). "The earliest dipodomyine heteromyid in North America and the phylogenetic relationships of geomorph rodents". PeerJ. 11. e14693. doi:10.7717/peerj.14693. PMC 10007967. PMID 36915658.
  40. McGrath, A. J.; Flynn, J. J.; Croft, D. A.; Chick, J.; Dodson, H. E.; Wyss, A, R. (2023). "Caviomorphs (Rodentia, Hystricognathi) from Pampa Castillo, Chile: new octodontoid records and biochronological implications". Papers in Palaeontology. 9 (1). e1477. doi:10.1002/spp2.1477. S2CID 256648305.
  41. Martin, R. A.; Kelly, T. S.; Holroyd, P. (2023). "Two Asian cricetodontine-like muroid rodents from the Neogene of western North America". Journal of Paleontology: 1–19. doi:10.1017/jpa.2023.10.
  42. Martin, R. A.; Zakrzewski, R. J. (2023). "An unusual Pliocene arvicoline-like cricetid rodent from Ellesmere Island in the Canadian Arctic". Journal of Vertebrate Paleontology. 42 (3). e2167605. doi:10.1080/02724634.2023.2167605. S2CID 257188815.
  43. Li, Q.; Ni, X.; Stidham, T. A.; Qin, C.; Gong, H.; Zhang, L. (2023). "Two large squirrels (Rodentia, Mammalia) from the Junggar Basin of northwestern China demonstrate early radiation among squirrels and suggest forested paleoenvironment in the late Eocene of Central Asia". Frontiers in Earth Science. 10. 1004509. doi:10.3389/feart.2022.1004509.
  44. Czernielewski, M. (2022). "A new species of Hystrix (Rodentia: Hystricidae) from the Pliocene site of Węże 1 in southern Poland". Acta Geologica Polonica. 73 (1): 73–83. doi:10.24425/agp.2022.142649. Archived from the original on 2023-03-04. Retrieved 2023-02-09.
  45. Ni, X.; Li, Q.; Deng, T.; Zhang, L.; Gong, H.; Qin, C.; Shi, J.; Shi, F.; Fu, S. (2023). "New Yuomys rodents from southeastern Qinghai-Tibet Plateau indicate low elevation during the Middle Eocene". Frontiers in Earth Science. 10. 1018675. doi:10.3389/feart.2022.1018675.
  46. van de Weerd, A. A.; de Bruijn, H.; Wessels, W. (2023). "A small assemblage of early Oligocene rodents and insectivores from the Sivas basin, Turkey". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-022-00563-x. S2CID 256714651. Archived from the original on 2023-02-09. Retrieved 2023-02-08.
  47. Bento Da Costa, L.; Bardin, J.; Senut, B. (2023). "Locomotor adaptations in the Early Miocene species Diamantomys luederitzi (Rodentia, Mammalia) from Uganda (Napak)". Journal of Morphology. 284 (3): e21560. doi:10.1002/jmor.21560. PMID 36715561. S2CID 256387920.
  48. Arnaudo, M. E.; Arnal, M. (2023). "First virtual endocast description of an early Miocene representative of Pan-Octodontoidea (Caviomorpha, Hystricognathi) and considerations on the early encephalic evolution in South American rodents". Journal of Paleontology. 97 (2): 454–476. doi:10.1017/jpa.2022.98. S2CID 256216328.
  49. Sen, S.; Geraads, D. (2023). "Lagomorpha (Mammalia) from the Pliocene-Pleistocene locality of Ahl al Oughlam, Morocco". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-022-00569-5. S2CID 256583662.
  50. Scott, C. S.; López-Torres, S.; Silcox, M. T.; Fox, R. C. (2023). "New paromomyids (Mammalia, Primates) from the Paleocene of southwestern Alberta, Canada, and an analysis of paromomyid interrelationships". Journal of Paleontology. 97 (2): 477–498. doi:10.1017/jpa.2022.103. S2CID 256183978.
  51. Miller, K.; Tietjen, K.; Beard, K. C. (2023). "Basal Primatomorpha colonized Ellesmere Island (Arctic Canada) during the hyperthermal conditions of the early Eocene climatic optimum". PLOS ONE. 18 (1). e0280114. doi:10.1371/journal.pone.0280114. PMC 9876366. PMID 36696373.
  52. Fostowicz-Frelik, Ł.; Cox, P. G.; Li, Q. (2023). "Mandibular characteristics of early Glires (Mammalia) reveal mixed rodent and lagomorph morphotypes". Philosophical Transactions of the Royal Society B: Biological Sciences. 378 (1880). 20220087. doi:10.1098/rstb.2022.0087. PMID 37183896.
  53. López-Torres, S.; Bhagat, R.; Bertrand, O. C.; Silcox, M. T.; Fostowicz-Frelik, Ł. (2023). "Locomotor behavior and hearing sensitivity in an early lagomorph reconstructed from the bony labyrinth". Ecology and Evolution. 13 (3). e9890. doi:10.1002/ece3.9890. PMC 10024310. PMID 36942029.
  54. White, C. L.; Bloch, J. I.; Morse, P. E.; Silcox, M. T. (2023). "Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution". Journal of Human Evolution. 175. 103303. doi:10.1016/j.jhevol.2022.103303. PMID 36608392. S2CID 255501297.
  55. Boessenecker, R. W.; Beatty, B. L.; Geisler, J. H. (2023). "New specimens and species of the Oligocene toothed baleen whale Coronodon from South Carolina and the origin of Neoceti". PeerJ. 11. e14795. doi:10.7717/peerj.14795.
  56. Kimura, T.; Hasegawa, Y.; Suzuki, T. (2022). "A New Species of Baleen Whale (Isanacetus-Group) from the Early Miocene, Japan". Paleontological Research. 27 (1): 85–101. doi:10.2517/PR210009. S2CID 252684197.
  57. Guo, Zixuan; Kohno, Naoki (2023-02-15). "An Early Miocene kentriodontoid (Cetacea: Odontoceti) from the western North Pacific, and its implications for their phylogeny and paleobiogeography". PLOS ONE. 18 (2): e0280218. doi:10.1371/journal.pone.0280218. ISSN 1932-6203. PMC 9931143. PMID 36791148.
  58. Burin, G.; Park, T.; James, T. D.; Slater, G. J.; Cooper, N. (2023). "The dynamic adaptive landscape of cetacean body size". Current Biology. 33 (9): 1787–1794.e3. doi:10.1016/j.cub.2023.03.014. PMID 36990088. S2CID 257775627.
  59. Davydenko, S.; Tretiakov, R.; Gol'din, P. (2023). "Diverse bone microanatomy in cetaceans from the Eocene of Ukraine further documents early adaptations to fully aquatic lifestyle". Frontiers in Earth Science. 11. 1168681. doi:10.3389/feart.2023.1168681.
  60. Tosetto, V.; Damarco, P.; Daniello, R.; Pavia, M.; Carnevale, G.; Bisconti, M. (2023). "Cranial Material of Long-Snouted Dolphins (Cetacea, Odontoceti, Eurhinodelphinidae) from the Early Miocene of Rosignano Monferrato, Piedmont (NW Italy): Anatomy, Paleoneurology, Phylogenetic Relationships and Paleobiogeography". Diversity. 15 (2). 227. doi:10.3390/d15020227.
  61. Tanaka, Y.; Nagasawa, K.; Oba, S. (2023). "A New Fossil Rorqual Aff. Balaenoptera bertae Specimen from the Shinazawa Formation (Late Pliocene to Early Pleistocene), Yamagata, Japan". Paleontological Research. 27 (3): 324–332. doi:10.2517/PR210038. S2CID 255441190.
  62. Govender, R.; Marx, F. G. (2023). "New cetacean fossils from the late Cenozoic of South Africa". Frontiers in Earth Science. 10. 1058104. doi:10.3389/feart.2022.1058104.
  63. van der Made, Jan; Rodríguez-Alba, Juan José; Martos, Juan Antonio; Gamarra, Jesús; Rubio-Jara, Susana; Panera, Joaquín; Yravedra, José (2023-03-14). "The fallow deer Dama celiae sp. nov. with two-pointed antlers from the Middle Pleistocene of Madrid, a contemporary of humans with Acheulean technology". Archaeological and Anthropological Sciences. 15 (4): 41. doi:10.1007/s12520-023-01734-3. ISSN 1866-9565. S2CID 257498724.
  64. Yu, Y.; Gao, H.; Li, Q.; Ni, X. (2023). "A new entelodont (Artiodactyla, Mammalia) from the late Eocene of China and its phylogenetic implications". Journal of Systematic Palaeontology. 21 (1). 2189436. doi:10.1080/14772019.2023.2189436.
  65. Aiglstorfer, M.; Wang, S.-Q.; Cheng, J.; Xing, L.; Fu, J.; Mennecart, B. (2023). "Miocene Moschidae (Mammalia, Ruminantia) from the Linxia Basin (China) connect Europe and Asia and show an early evolutionary diversity of a today monogeneric family". Palaeogeography, Palaeoclimatology, Palaeoecology. 111531. doi:10.1016/j.palaeo.2023.111531. S2CID 257860518.
  66. Bai, Bin; Wang, Yuan-Qing; Theodor, Jessica M.; Meng, Jin (2023). "Small artiodactyls with tapir-like teeth from the middle Eocene of the Erlian Basin, Inner Mongolia, China". Frontiers in Earth Science. 11. doi:10.3389/feart.2023.1117911. ISSN 2296-6463.
  67. Geraads, D.; McCrossin, M.; Benefit, B. (2023). "Bovidae (Mammalia) from the early Middle Miocene of Maboko, Kenya". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2023.2179397. S2CID 257307422.
  68. Pandolfi, L.; Rook, L. (2023). "An enigmatic giraffid from the latest Miocene of Italy: Taxonomy, affinity, and paleobiogeographic implications". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09654-8. S2CID 257491293.
  69. Keppeler, H.; Schultz, J. A.; Ruf, I.; Martin, T. (2023). "Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America". Palaeontographica Abteilung A. doi:10.1127/pala/2023/0140. S2CID 257336641.
  70. Uzunidis, A.; Rivals, F.; Rufà, A.; Blasco, R.; Rosell, J. (2023). "The Exceptional Presence of Megaloceros giganteus in North-Eastern Iberia and Its Palaeoecological Implications: The Case of Teixoneres Cave (Moià, Barcelona, Spain)". Diversity. 15 (2). 299. doi:10.3390/d15020299.
  71. Klein, F.; Costeur, L.; Ferreira, G. S.; Hartung, J. (2023). "The bony labyrinth of the Miocene boselaphin bovid Miotragocerus pannoniae: insights into ontogeny". Journal of Vertebrate Paleontology. 42 (2). e2153226. doi:10.1080/02724634.2022.2153226. S2CID 255621131.
  72. Shi, Q.-Q.; Zhang, Z.-Q. (2023). "New material of Miotragocerus (Bovidae, Artiodactyla) from northern China and its systematic implications". Journal of Systematic Palaeontology. 21 (1). 2194891. doi:10.1080/14772019.2023.2194891.
  73. Martin, J. E.; Mead, J. I. (2023). "The earliest known North American bovid, Neotragocerus". Journal of Vertebrate Paleontology. 42 (2). e2163176. doi:10.1080/02724634.2022.2163176. S2CID 256724685.
  74. Orliac, M. J.; Mourlam, M. J.; Boisserie, J.-R.; Costeur, L.; Lihoreau, F. (2023). "Evolution of semiaquatic habits in hippos and their extinct relatives: insights from the ear region". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac112.
  75. Jiménez-Hidalgo, E.; Carbot-Chanona, G. (2023). "First Mexican records of Anthracotheriidae (Mammalia: Artiodactyla)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–5. doi:10.1017/S1755691022000238. S2CID 256314130.
  76. Gernelle, K.; Lihoreau, F.; Boisserie, J.-R.; Marivaux, L.; Métais, G.; Antoine, P.-O. (2023). "New material of Parabrachyodus hyopotamoides from Samane Nala, Bugti Hills (Pakistan) and the origin of Merycopotamini (Mammalia: Hippopotamoidea)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac111.
  77. Martino, R.; Rook, L.; Mateus, O.; Pandolfi, L. (2023). "The Late Miocene hippopotamid, Archaeopotamus pantanellii nov. comb., from the Casino Basin (Tuscany, Italy): paleobiogeographic implications". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2194912.
  78. Pandolfi, L.; Martino, R.; Belvedere, M.; Martínez-Navarro, B.; Medin, T.; Libsekal, Y.; Rook, L. (2023). "The latest Early Pleistocene hippopotami from the human-bearing locality of Buia (Eritrea)". Quaternary Science Reviews. 308. 108039. doi:10.1016/j.quascirev.2023.108039.
  79. Jiangzuo, Q.; Werdelin, L.; Sanisidro, O.; Yang, R.; Fu, J.; Li, S.; Wang, S.; Deng, T. (2023). "Origin of adaptations to open environments and social behaviour in sabretoothed cats from the northeastern border of the Tibetan Plateau". Proceedings of the Royal Society B: Biological Sciences. 290 (1997). 20230019. doi:10.1098/rspb.2023.0019. PMC 10113030. PMID 37072045.
  80. Jiangzuo, Q.; Flynn, J. J.; Wang, S.; Hou, S.; Deng, T. (2023). "New fossil giant panda relatives (Ailuropodinae, Ursidae): a basal lineage of gigantic Mio-Pliocene cursorial carnivores". American Museum Novitates (3996): 1–71. doi:10.1206/3996.1. hdl:2246/7315. S2CID 257508340.
  81. Zhang, X.-Y.; Bai, B.; Wang, Y.-Q. (2023). "Bear or bear-dog? An enigmatic arctoid carnivoran from the late Eocene of Asia". Frontiers in Earth Science. 11. 1137891. doi:10.3389/feart.2023.1137891.
  82. Hemmer, H. (2023). "The evolution of the palaeopantherine cats, Palaeopanthera gen. nov. blytheae (Tseng et al., 2014) and Palaeopanthera pamiri (Ozansoy, 1959) comb. nov. (Mammalia, Carnivora, Felidae)". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-023-00571-5. S2CID 257842190.
  83. Jiangzuo, Q.; Wang, Y.; Ge, J.; Liu, S.; Song, Y.; Jin, C.; Jiang, H.; Liu, J. (2023). "Discovery of jaguar from northeastern China middle Pleistocene reveals an intercontinental dispersal event". Historical Biology: An International Journal of Paleobiology. 35 (3): 293–302. doi:10.1080/08912963.2022.2034808. S2CID 246693903.
  84. Everett, Christopher J.; Deméré, Thomas A.; Wyss, André R. (2023-03-23). "A new species of Pinnarctidion from the Pysht Formation of Washington State (U.S.A.) and a phylogenetic analysis of basal pan-pinnipeds (Eutheria, Carnivora)". Journal of Vertebrate Paleontology. 42 (3): e2178930. doi:10.1080/02724634.2023.2178930. ISSN 0272-4634. S2CID 257731013.
  85. Morlo, M.; Nengo, I. O.; Friscia, A.; Mbogo, W.; Miller, E. R.; Russo, G. A. (2023). "Presence of a giant amphicyonid and other carnivores (Mammalia) from the Middle Miocene of Napudet, Kenya". Journal of Vertebrate Paleontology. 42 (2). e2160643. doi:10.1080/02724634.2022.2160643. S2CID 256354136.
  86. Varajão de Latorre, D. (2023). "Fossil bacula of five species of Borophaginae (Family: Canidae): Implications for their reproductive biology". PLOS ONE. 18 (1). e0280327. doi:10.1371/journal.pone.0280327. PMC 9844895. PMID 36649261.
  87. Caro, F. J.; Labarca, R.; Prevosti, F. J.; Villavicencio, N.; Jarpa, G. M.; Herrera, K. A.; Correa-Lau, J.; Latorre, C.; Santoro, C. M. (2023). "First record of cf. Aenocyon dirus (Leidy, 1858) (Carnivora, Canidae), from the Upper Pleistocene of the Atacama Desert, northern Chile". Journal of Vertebrate Paleontology. e2190785. doi:10.1080/02724634.2023.2190785.
  88. Martínez-Navarro, B.; Gossa, T.; Carotenuto, F.; Bartolini-Lucenti, S.; Palmqvist, P.; Asrat, A.; Figueirido, B.; Rook, L.; Niespolo, E. M.; Renne, P. R.; Herzlinger, G.; Hovers, E. (2023). "The earliest Ethiopian wolf: implications for the species evolution and its future survival". Communications Biology. 6 (1). 530. doi:10.1038/s42003-023-04908-w. PMID 37193884.
  89. Prevosti, F. J. (2023). "Sistemática de los grandes cánidos (Mammalia, Carnivora,Canidae) fósiles de América del Sur". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 78–192. doi:10.5710/PEAPA.28.10.2022.417.
  90. Pérez-Claros, J. A. (2023). "An ecomorphological characterization of the percrocutoid hyaenids: a multivariate approach using postcanine dentition". Journal of Vertebrate Paleontology. e2197972. doi:10.1080/02724634.2023.2197972.
  91. Kargopoulos, N.; Roussiakis, S.; Kampouridis, P.; Koufos, G. (2023). "Interspecific competition in ictitheres (Carnivora: Hyaenidae) from the Late Miocene of Eurasia". Comptes Rendus Palevol. 22 (3): 33–44. doi:10.5852/cr-palevol2023v22a3. S2CID 256438030.
  92. Figueirido, B.; Pérez-Ramos, A.; Hotchner, A.; Lovelace, D.; Pastor, F. J.; Martín-Serra, A. (2023). "Elbow-joint morphology in the North American 'cheetah-like' cat Miracinonyx trumani". Biology Letters. 19 (1). 20220483. doi:10.1098/rsbl.2022.0483. PMC 9873470. PMID 36693427.
  93. Rietbergen, T. B.; van den Hoek Ostende, L. W.; Aase, A.; Jones, M. F.; Medeiros, E. D.; Simmons, N. B. (2023). "The oldest known bat skeletons and their implications for Eocene chiropteran diversification". PLOS ONE. 18 (4). e0283505. doi:10.1371/journal.pone.0283505. PMC 10096270. PMID 37043445.
  94. Hand, S. J.; Archer, M.; Gillespie, A.; Myers, T. (2023). "Xenorhinos bhatnagari sp. nov., a new, nasal-emitting trident bat (Rhinonycteridae, Rhinolophoidea) from early Miocene forests in northern Australia". The Anatomical Record. doi:10.1002/ar.25210. PMID 36995152. S2CID 257835075.
  95. Lopatin, A. V. (2023). "Early Pleistocene Serotine Bat Eptesicus praeglacialis (Vespertilionidae, Chiroptera) from the Taurida Cave in Crimea". Doklady Biological Sciences. 508 (1): 85–94. doi:10.1134/S0012496622060102.
  96. Korth, W. W.; Boyd, C. A.; Emry, R. J. (2023). "Additional small mammals from the Oligocene Brule Formation (Whitneyan) of southwestern North Dakota". Paludicola. 14 (2): 57–74.
  97. Perales-Gogenola, L.; Badiola, A.; Gómez-Olivencia, A.; Pereda-Suberbiola, X. (2023). "A remarkable new paleotheriid (Mammalia) in the endemic Iberian Eocene perissodactyl fauna". Journal of Vertebrate Paleontology. e2189447. doi:10.1080/02724634.2023.2189447.
  98. Pandolfi, Luca; Martino, Roberta (2023-01-20). "Taxonomy and phylogeny of the smallest Miocene rhinocerotid Parvorhinus n. gen. (Mammalia, Rhinocerotidae)". Palaeoworld. doi:10.1016/j.palwor.2023.01.009. hdl:11563/163195. ISSN 1871-174X. S2CID 256152126.
  99. Kampouridis, P.; Rățoi, B. G.; Ursachi, L. (2023). "New evidence for the unique coexistence of two subfamilies of clawed perissodactyls (Mammalia, Chalicotheriidae) in the Upper Miocene of Romania and the Eastern Mediterranean". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09657-5.
  100. Veine-Tonizzo, L.; Tissier, J.; Bukhsianidze, M.; Vasilyan, D.; Becker, D. (2023). "Cranial morphology and phylogenetic relationships of Amynodontidae Scott & Osborn, 1883 (Perissodactyla, Rhinocerotoidea)". Comptes Rendus Palevol. 22 (8): 109–142. doi:10.5852/cr-palevol2023v22a8. S2CID 257644682.
  101. Lu, X.-K.; Deng, T.; Pandolfi, L. (2023). "Reconstructing the phylogeny of the hornless rhinoceros Aceratheriinae". Frontiers in Ecology and Evolution. 11. 1005126. doi:10.3389/fevo.2023.1005126.
  102. Shi, B.-Z.; Chen, S.-K.; Lu, X.-K.; Deng, T. (2023). "First report on rhinoceros from the late Neogene Qin Basin of Shanxi, China". The Anatomical Record. doi:10.1002/ar.25186. PMID 36869586. S2CID 257334792.
  103. Pandolfi, L. (2023). "Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae". Journal of Quaternary Science. doi:10.1002/jqs.3496. hdl:11563/163194. S2CID 256167036.
  104. Sanisidro, O.; Mihlbachler, M. C.; Cantalapiedra, J. L. (2023). "A macroevolutionary pathway to megaherbivory". Science. 380 (6645): 616–618. doi:10.1126/science.ade1833.
  105. Cirilli, O.; Pandolfi, L.; Alba, D. M.; Madurell-Malapeira, J.; Bukhsianidze, M.; Kordos, L.; Lordkipanidze, D.; Rook, L.; Bernor, R. L. (2023). "The last Plio-Pleistocene hipparions of Western Eurasia. A review with remarks on their taxonomy, paleobiogeography and evolution". Quaternary Science Reviews. 306. 107976. doi:10.1016/j.quascirev.2023.107976. S2CID 257594449.
  106. Fernández, M.; Zimicz, A. N.; Bond, M.; Chornogubsky, L.; Muñoz, N. A.; Fernicola, J. C. (2023). "First Pyrotheria (Mammalia, Meridiungulata) from the Quebrada de Los Colorados Formation (middle Eocene–early Oligocene) at Los Cardones National Park, northwestern Argentina". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09649-5. S2CID 256813940.
  107. Averianov, Alexander; Obraztsova, Ekaterina; Danilov, Igor; Jin, Jian-Hua (2023). "A new hypercarnivorous hyaenodont from the Eocene of South China". Frontiers in Ecology and Evolution. 11. doi:10.3389/fevo.2023.1076819. ISSN 2296-701X.
  108. Püschel, Hans P.; Alarcón-Muñoz, Jhonatan; Soto-Acuña, Sergio; Ugalde, Raúl; Shelley, Sarah L.; Brusatte, Stephen L. (2023-02-25). "Anatomy and phylogeny of a new small macraucheniid (Mammalia: Litopterna) from the Bahía Inglesa Formation (late Miocene), Atacama Region, Northern Chile". Journal of Mammalian Evolution. doi:10.1007/s10914-022-09646-0. ISSN 1573-7055.
  109. Salesa, M. J.; Siliceo, G.; Antón, M.; Martínez, I.; Ortega, F. (2023). "New data on the mammalian fauna from the late middle Eocene (MP 15–16) of Mazaterón (Soria, Spain): The youngest presence of the genus Prodissopsalis (Hyaenodonta, Hyaenodontidae) in Europe". The Anatomical Record. doi:10.1002/ar.25223. PMID 37060198.
  110. Shockey, B. J.; White, E.; Anaya, F.; McGrath, A. (2023). "A new proterotheriid (Mammalia, Litopterna) from the Salla Beds of Bolivia (upper Oligocene): phylogeny and litoptern patellar pit knee locks". Journal of Vertebrate Paleontology. 42 (2). e2162409. doi:10.1080/02724634.2022.2162409. S2CID 256355550.
  111. Blanco, R. E.; Yorio, L.; Montenegro, F. (2023). "Reconstruction of the cervical skeleton posture of the recently-extinct litoptern mammal Macrauchenia patachonica Owen, 1838". Palæovertebrata. 46 (1). e1. doi:10.18563/pv.46.1.e1.
  112. Vera, B.; Mones, Á. (2023). "The status of Peripantostylops and Othnielmarshia (Mammalia: Notoungulata: Henricosborniidae) from the early-middle Eocene of Patagonia (Argentina)". Historical Biology: An International Journal of Paleobiology: 1–17. doi:10.1080/08912963.2023.2165919. S2CID 256181218.
  113. Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2023). "Systematic revision of Interatherium and Icochilus (Interatheriidae, Notoungulata) from the Santa Cruz Formation (early to middle Miocene), Santa Cruz Province, Argentina". Ameghiniana. 60 (3): 236–258. doi:10.5710/AMGH.12.01.2023.3541. S2CID 255893070.
  114. Campos-Medina, J.; Montoya-Sanhueza, G.; Moreno, K.; Bostelmann Torrealba, E.; García, M. (2023). "Paleohistology of Caraguatypotherium munozi (Mammalia, Notoungulata, Mesotheriidae) from the early late Miocene of northern Chile: A preliminary ontogenetic approach". PLOS ONE. 18 (3). e0273127. doi:10.1371/journal.pone.0273127. PMC 10019713. PMID 36928884.
  115. Solé, F.; Fournier, M.; Ladevèze, S.; Le Verger, K.; Godinot, M.; Laurent, Y.; Smith, T. (2023). "New postcranial elements of mesonychid mammals from the Ypresian of France: New hypotheses for the radiation and evolution of the mesonychids in Europe". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09651-x.
  116. Brandoni, D.; Barasoain, D.; González Ruiz, L. R. (2023). "Late Miocene Dasypodidae Gray, 1821 (Xenarthra, Cingulata) from the Toro Negro Formation (Central Andes, Argentina): diversity and chronological and biogeographical implications". Comptes Rendus Palevol. 22 (1): 1–16. doi:10.5852/cr-palevol2023v22a1. S2CID 256175068.
  117. Gaudin, T.; Scaife, T.; Toledo, N.; De Iuliis, G. (2023). "Cranial osteology of the basal megatherioid sloth Schismotherium (Mammalia, Xenarthra) and its taxonomic implications". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2022.2162399. S2CID 255655393.
  118. Novacek, M. J.; Hoffman, E. A.; O'leary, M. A. (2023). "First occurrence of the eutherian mammal Asioryctes nemegtensis from the Upper Cretaceous Djadokhta Formation, Gobi Desert, Mongolia, and a revised alpha taxonomy based on the skull and dentition". Journal of Vertebrate Paleontology. e2196320. doi:10.1080/02724634.2023.2196320.
  119. Myers, T.; Crosby, K. (2023). "A new Early–Middle Miocene phalangerid (Marsupialia: Phalangeridae) from the Riversleigh World Heritage Area, Boodjamulla (Lawn Hill) National Park, northwestern Queensland". Alcheringa: An Australasian Journal of Palaeontology: 1–12. doi:10.1080/03115518.2023.2185677. S2CID 257793041.
  120. Crichton, A. I.; Worthy, T. H.; Camens, A. B.; Prideaux, G. J. (2023). "A new ektopodontid possum (Diprotodontia, Ektopodontidae) from the Oligocene of central Australia, and its implications for phalangeroid interrelationships". Journal of Vertebrate Paleontology. 42 (3). e2171299. doi:10.1080/02724634.2023.2171299. S2CID 257180972.
  121. Gillespie, A. K. (2023). "Two new marsupial lion taxa (Marsupialia, Thylacoleonidae) from the early and Middle Miocene of Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–16. doi:10.1080/03115518.2022.2152096. S2CID 256157821.
  122. Goin, F. J.; de los Reyes, M. (2023). "A new species of Lutreolina Thomas, 1910 (Marsupialia, Didelphidae) from the Early Pleistocene of the southern Pampas (Buenos Aires Province, Argentina)". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 193–203. doi:10.5710/PEAPA.24.10.2022.435.
  123. Churchill, T. J.; Archer, M.; Hand, S. J.; Myers, T.; Gillespie, A.; Beck, R. M. D. (2023). "A new diminutive durophagous Miocene dasyuromorphian (Marsupialia, Malleodectidae) from the Riversleigh World Heritage Area, northern Australia". Journal of Vertebrate Paleontology. 42 (3). e2170804. doi:10.1080/02724634.2023.2170804. S2CID 257544594.
  124. Crichton, Arthur I.; Worthy, Trevor H.; Camens, Aaron B.; Yates, Adam M.; Couzens, Aidan M. C.; Prideaux, Gavin J. (2023-03-19). "A new species of Mukupirna (Diprotodontia, Mukupirnidae) from the Oligocene of Central Australia sheds light on basal vombatoid interrelationships". Alcheringa: An Australasian Journal of Palaeontology: 1–29. doi:10.1080/03115518.2023.2181397. ISSN 0311-5518. S2CID 257635631.
  125. Cramb, J.; Hocknull, S.; Beck, R. M. D.; Kealy, S.; Price, G. J. (2023). "Urrayira whitei gen. et sp. nov.: a dasyuromorphian (Mammalia: Marsupialia) with incipient zalambdodonty from the Middle Pleistocene of Queensland, Australia". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2023.2169351.
  126. Carneiro, L. M.; Oliveira, É. V. (2023). "Paleogene Metatherians from the Itaboraí Basin: Diversity and Affinities". In N. C. Cáceres; C. R. Dickman (eds.). American and Australasian Marsupials. An Evolutionary, Biogeographical, and Ecological Approach. Springer. doi:10.1007/978-3-030-88800-8_5-1.
  127. Gaillard, C.; MacPhee, R. D. E.; Forasiepi, A. M. (2023). "Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta)". Communications Biology. 6 (1). 257. doi:10.1038/s42003-023-04624-5. PMC 10030895. PMID 36944801.
  128. Gônet, J.; Bardin, J.; Girondot, M.; Hutchinson, J. R.; Laurin, M. (2023). "Unravelling the postural diversity of mammals: Contribution of humeral cross-sections to palaeobiological inferences". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09652-w. S2CID 256788973. Archived from the original on 2023-02-09. Retrieved 2023-02-09.
  129. Goin, F. J.; Vieytes, E. C.; Crespo, V. D.; Oliveira, É. V. (2023). "†Estelestes ensis (Mammalia, Metatheria) from the early Eocene of Baja California (Mexico) as a generalized polydolopimorphian". Journal of Paleontology. 97 (2): 533–538. doi:10.1017/jpa.2022.105. S2CID 256148665.
  130. Chinsamy, A.; Black, K. H.; Hand, S. J.; Archer, M. (2023). "Paleobiological implications of the bone histology of the extinct Australian marsupial Nimbadon lavarackorum". Journal of Paleontology: 1–13. doi:10.1017/jpa.2023.22.
  131. Chimento, N. R.; Agnolín, F. L.; Manabe, M.; Tsuihiji, T.; Rich, T. H.; Vickers-Rich, P.; Novas, F. E. (2023). "First monotreme from the Late Cretaceous of South America". Communications Biology. 6 (1). 146. doi:10.1038/s42003-023-04498-7. PMC 9935847. PMID 36797304.
  132. Krause, D. W.; Hoffmann, S. (2023). "First postcranial remains of the Late Cretaceous gondwanatherian mammal Vintana sertichi". Cretaceous Research. 105577. doi:10.1016/j.cretres.2023.105577.
  133. Luo, Z.-X.; Martin, T. (2023). "Mandibular and dental characteristics of the Late Jurassic mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida)". PalZ. doi:10.1007/s12542-023-00651-z.
  134. Ercoli, M. D.; Álvarez, A.; Warburton, N. M.; Janis, C. M.; Potapova, E. G.; Herring, S. W.; Cassini, G. H.; Tarquini, J.; Kuznetsov, A. (2023). "Myology of the masticatory apparatus of herbivorous mammals and a novel classification for a better understanding of herbivore diversity". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac102.
  135. Foley, N. M.; Mason, V. C.; Harris, A. J.; Bredemeyer, K. R.; Damas, J.; Lewin, H. A.; Eizirik, E.; Gatesy, J.; Karlsson, E. K.; Lindblad-Toh, K.; Zoonomia Consortium; Springer, M. S.; Murphy, W. J. (2023). "A genomic timescale for placental mammal evolution". Science. 380 (6643). eabl8189. doi:10.1126/science.abl8189. PMID 37104581.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.